{"title":"在酿酒酵母种群中,报酬矩阵的进化依赖于资源的经验证据。","authors":"Pavithra Venkataraman, Anjali Mahilkar, Namratha Raj, Supreet Saini","doi":"10.1093/jeb/voae128","DOIUrl":null,"url":null,"abstract":"<p><p>In evolutionary game theory, a relative comparison of the cost and benefit associated with obtaining a resource, called payoff, is used as an indicator of fitness of an organism. Payoffs of different strategies, quantitatively represented as payoff matrices, are used to understand complex inter-species and intra-species interactions like cooperation, mutualism, and altruism. Payoff matrices, however, are usually treated as invariant with time - largely due to the absence of any empirical data quantifying their evolution. In this paper, we present empirical evidence of three types of resource-dependent changes in the payoff matrices of evolving Saccharomyces cerevisiae populations. We show that depending on the carbon source and participating genotypes, N-player games could collapse, be born, or be maintained. Our results highlight the need to consider the dynamic nature of payoff matrices while making even short-term predictions about population interactions and dynamics.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical evidence of resource dependent evolution of payoff matrices in Saccharomyces cerevisiae populations.\",\"authors\":\"Pavithra Venkataraman, Anjali Mahilkar, Namratha Raj, Supreet Saini\",\"doi\":\"10.1093/jeb/voae128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In evolutionary game theory, a relative comparison of the cost and benefit associated with obtaining a resource, called payoff, is used as an indicator of fitness of an organism. Payoffs of different strategies, quantitatively represented as payoff matrices, are used to understand complex inter-species and intra-species interactions like cooperation, mutualism, and altruism. Payoff matrices, however, are usually treated as invariant with time - largely due to the absence of any empirical data quantifying their evolution. In this paper, we present empirical evidence of three types of resource-dependent changes in the payoff matrices of evolving Saccharomyces cerevisiae populations. We show that depending on the carbon source and participating genotypes, N-player games could collapse, be born, or be maintained. Our results highlight the need to consider the dynamic nature of payoff matrices while making even short-term predictions about population interactions and dynamics.</p>\",\"PeriodicalId\":50198,\"journal\":{\"name\":\"Journal of Evolutionary Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolutionary Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jeb/voae128\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jeb/voae128","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Empirical evidence of resource dependent evolution of payoff matrices in Saccharomyces cerevisiae populations.
In evolutionary game theory, a relative comparison of the cost and benefit associated with obtaining a resource, called payoff, is used as an indicator of fitness of an organism. Payoffs of different strategies, quantitatively represented as payoff matrices, are used to understand complex inter-species and intra-species interactions like cooperation, mutualism, and altruism. Payoff matrices, however, are usually treated as invariant with time - largely due to the absence of any empirical data quantifying their evolution. In this paper, we present empirical evidence of three types of resource-dependent changes in the payoff matrices of evolving Saccharomyces cerevisiae populations. We show that depending on the carbon source and participating genotypes, N-player games could collapse, be born, or be maintained. Our results highlight the need to consider the dynamic nature of payoff matrices while making even short-term predictions about population interactions and dynamics.
期刊介绍:
It covers both micro- and macro-evolution of all types of organisms. The aim of the Journal is to integrate perspectives across molecular and microbial evolution, behaviour, genetics, ecology, life histories, development, palaeontology, systematics and morphology.