视觉体验数据集:超过 200 个小时的综合眼球运动、里程测量和自我中心视频记录。

IF 2 4区 心理学 Q2 OPHTHALMOLOGY
Michelle R Greene, Benjamin J Balas, Mark D Lescroart, Paul R MacNeilage, Jennifer A Hart, Kamran Binaee, Peter A Hausamann, Ronald Mezile, Bharath Shankar, Christian B Sinnott, Kaylie Capurro, Savannah Halow, Hunter Howe, Mariam Josyula, Annie Li, Abraham Mieses, Amina Mohamed, Ilya Nudnou, Ezra Parkhill, Peter Riley, Brett Schmidt, Matthew W Shinkle, Wentao Si, Brian Szekely, Joaquin M Torres, Eliana Weissmann
{"title":"视觉体验数据集:超过 200 个小时的综合眼球运动、里程测量和自我中心视频记录。","authors":"Michelle R Greene, Benjamin J Balas, Mark D Lescroart, Paul R MacNeilage, Jennifer A Hart, Kamran Binaee, Peter A Hausamann, Ronald Mezile, Bharath Shankar, Christian B Sinnott, Kaylie Capurro, Savannah Halow, Hunter Howe, Mariam Josyula, Annie Li, Abraham Mieses, Amina Mohamed, Ilya Nudnou, Ezra Parkhill, Peter Riley, Brett Schmidt, Matthew W Shinkle, Wentao Si, Brian Szekely, Joaquin M Torres, Eliana Weissmann","doi":"10.1167/jov.24.11.6","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce the Visual Experience Dataset (VEDB), a compilation of more than 240 hours of egocentric video combined with gaze- and head-tracking data that offer an unprecedented view of the visual world as experienced by human observers. The dataset consists of 717 sessions, recorded by 56 observers ranging from 7 to 46 years of age. This article outlines the data collection, processing, and labeling protocols undertaken to ensure a representative sample and discusses the potential sources of error or bias within the dataset. The VEDB's potential applications are vast, including improving gaze-tracking methodologies, assessing spatiotemporal image statistics, and refining deep neural networks for scene and activity recognition. The VEDB is accessible through established open science platforms and is intended to be a living dataset with plans for expansion and community contributions. It is released with an emphasis on ethical considerations, such as participant privacy and the mitigation of potential biases. By providing a dataset grounded in real-world experiences and accompanied by extensive metadata and supporting code, the authors invite the research community to use and contribute to the VEDB, facilitating a richer understanding of visual perception and behavior in naturalistic settings.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"24 11","pages":"6"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466363/pdf/","citationCount":"0","resultStr":"{\"title\":\"The visual experience dataset: Over 200 recorded hours of integrated eye movement, odometry, and egocentric video.\",\"authors\":\"Michelle R Greene, Benjamin J Balas, Mark D Lescroart, Paul R MacNeilage, Jennifer A Hart, Kamran Binaee, Peter A Hausamann, Ronald Mezile, Bharath Shankar, Christian B Sinnott, Kaylie Capurro, Savannah Halow, Hunter Howe, Mariam Josyula, Annie Li, Abraham Mieses, Amina Mohamed, Ilya Nudnou, Ezra Parkhill, Peter Riley, Brett Schmidt, Matthew W Shinkle, Wentao Si, Brian Szekely, Joaquin M Torres, Eliana Weissmann\",\"doi\":\"10.1167/jov.24.11.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce the Visual Experience Dataset (VEDB), a compilation of more than 240 hours of egocentric video combined with gaze- and head-tracking data that offer an unprecedented view of the visual world as experienced by human observers. The dataset consists of 717 sessions, recorded by 56 observers ranging from 7 to 46 years of age. This article outlines the data collection, processing, and labeling protocols undertaken to ensure a representative sample and discusses the potential sources of error or bias within the dataset. The VEDB's potential applications are vast, including improving gaze-tracking methodologies, assessing spatiotemporal image statistics, and refining deep neural networks for scene and activity recognition. The VEDB is accessible through established open science platforms and is intended to be a living dataset with plans for expansion and community contributions. It is released with an emphasis on ethical considerations, such as participant privacy and the mitigation of potential biases. By providing a dataset grounded in real-world experiences and accompanied by extensive metadata and supporting code, the authors invite the research community to use and contribute to the VEDB, facilitating a richer understanding of visual perception and behavior in naturalistic settings.</p>\",\"PeriodicalId\":49955,\"journal\":{\"name\":\"Journal of Vision\",\"volume\":\"24 11\",\"pages\":\"6\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466363/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vision\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/jov.24.11.6\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.24.11.6","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了视觉体验数据集(VEDB),该数据集汇集了 240 多个小时的自我中心视频,并结合了凝视和头部跟踪数据,为人类观察者体验视觉世界提供了前所未有的视角。该数据集由 56 名年龄从 7 岁到 46 岁的观察者记录的 717 个片段组成。本文概述了为确保样本的代表性而采取的数据收集、处理和标签协议,并讨论了数据集中潜在的误差或偏差来源。VEDB 的潜在应用领域非常广泛,包括改进凝视跟踪方法、评估时空图像统计以及完善用于场景和活动识别的深度神经网络。VEDB 可通过现有的开放科学平台访问,旨在成为一个活的数据集,并计划进行扩展和社区贡献。该数据集的发布注重伦理方面的考虑,如参与者的隐私和减少潜在的偏见。通过提供一个基于真实世界经验的数据集,并附带大量元数据和支持代码,作者邀请研究界使用 VEDB 并为其做出贡献,从而促进对自然环境中的视觉感知和行为有更丰富的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The visual experience dataset: Over 200 recorded hours of integrated eye movement, odometry, and egocentric video.

We introduce the Visual Experience Dataset (VEDB), a compilation of more than 240 hours of egocentric video combined with gaze- and head-tracking data that offer an unprecedented view of the visual world as experienced by human observers. The dataset consists of 717 sessions, recorded by 56 observers ranging from 7 to 46 years of age. This article outlines the data collection, processing, and labeling protocols undertaken to ensure a representative sample and discusses the potential sources of error or bias within the dataset. The VEDB's potential applications are vast, including improving gaze-tracking methodologies, assessing spatiotemporal image statistics, and refining deep neural networks for scene and activity recognition. The VEDB is accessible through established open science platforms and is intended to be a living dataset with plans for expansion and community contributions. It is released with an emphasis on ethical considerations, such as participant privacy and the mitigation of potential biases. By providing a dataset grounded in real-world experiences and accompanied by extensive metadata and supporting code, the authors invite the research community to use and contribute to the VEDB, facilitating a richer understanding of visual perception and behavior in naturalistic settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Vision
Journal of Vision 医学-眼科学
CiteScore
2.90
自引率
5.60%
发文量
218
审稿时长
3-6 weeks
期刊介绍: Exploring all aspects of biological visual function, including spatial vision, perception, low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信