Akihiro Yamada, Mayank Gautam, Ayaka I Yamada, Jennifer Ling, Saurav Gupta, Hidemasa Furue, Wenqin Luo, Jianguo G Gu
{"title":"酸感应离子通道驱动啮齿动物后爪无毛皮肤的梅克尔细胞-神经元复合体产生触觉冲动。","authors":"Akihiro Yamada, Mayank Gautam, Ayaka I Yamada, Jennifer Ling, Saurav Gupta, Hidemasa Furue, Wenqin Luo, Jianguo G Gu","doi":"10.1523/JNEUROSCI.0885-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Merkel cell-neurite complexes (MNCs) are enriched in touch-sensitive areas, including whisker hair follicles and the glabrous skin of the rodent's paws, where tactile stimulation elicits slowly adapting type 1 (SA1) tactile impulses to encode for the sense of touch. Recently, we have shown with rodent whisker hair follicles that SA1 impulses are generated through fast excitatory synaptic transmission at MNCs and driven by acid-sensing ion channels (ASICs). However, it is currently unknown whether, besides whisker hair follicles, ASICs also play an essential role in generating SA1 impulses from MNCs of other body parts in mammals. In the present study, we attempted to address this question by using the skin-nerve preparations made from the hindpaw glabrous skin and tibial nerves of both male and female rodents and applying the pressure-clamped single-fiber recordings. We showed that SA1 impulses elicited by tactile stimulation to the rat hindpaw glabrous skin were largely diminished in the presence of amiloride and diminazene, two ASIC channel blockers. Furthermore, using the hindpaw glabrous skin and tibial nerve preparations made from the mice genetically deleted of ASIC3 channels (ASIC3<sup>-/-</sup>), we showed that the frequency of SA1 impulses was significantly lower in ASIC3<sup>-/-</sup> mice than in littermate wildtype ASIC3<sup>+/+</sup> mice, a result consistent with the pharmacological experiments with ASIC channel blockers. Our findings suggest that ASIC channels are essential for generating SA1 impulses to underlie the sense of touch in the glabrous skin of rodent hindpaws.<b>Significance Statement</b> Merkel cell-neurite complexes (MNCs) are enriched in touch-sensitive areas, including whisker hair follicles and the glabrous skin of the rodent's paws, where tactile stimulation elicits slowly adapting type 1 (SA1) tactile impulses to encode for the sense of touch. Here, using the skin-nerve preparations made from the hindpaw glabrous skin and tibial nerves of rodents and applying the pressure-clamped single-fiber recordings, we have demonstrated that ASIC channels are essential for generating SA1 impulses at MNCs in the glabrous skin of rodent hindpaws. Thus, ASIC channels at MNCs may play a key role in the sense of touch to the skin of mammals.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acid-sensing ion channels drive the generation of tactile impulses in Merkel cell-neurite complexes of the glabrous skin of rodent hindpaws.\",\"authors\":\"Akihiro Yamada, Mayank Gautam, Ayaka I Yamada, Jennifer Ling, Saurav Gupta, Hidemasa Furue, Wenqin Luo, Jianguo G Gu\",\"doi\":\"10.1523/JNEUROSCI.0885-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Merkel cell-neurite complexes (MNCs) are enriched in touch-sensitive areas, including whisker hair follicles and the glabrous skin of the rodent's paws, where tactile stimulation elicits slowly adapting type 1 (SA1) tactile impulses to encode for the sense of touch. Recently, we have shown with rodent whisker hair follicles that SA1 impulses are generated through fast excitatory synaptic transmission at MNCs and driven by acid-sensing ion channels (ASICs). However, it is currently unknown whether, besides whisker hair follicles, ASICs also play an essential role in generating SA1 impulses from MNCs of other body parts in mammals. In the present study, we attempted to address this question by using the skin-nerve preparations made from the hindpaw glabrous skin and tibial nerves of both male and female rodents and applying the pressure-clamped single-fiber recordings. We showed that SA1 impulses elicited by tactile stimulation to the rat hindpaw glabrous skin were largely diminished in the presence of amiloride and diminazene, two ASIC channel blockers. Furthermore, using the hindpaw glabrous skin and tibial nerve preparations made from the mice genetically deleted of ASIC3 channels (ASIC3<sup>-/-</sup>), we showed that the frequency of SA1 impulses was significantly lower in ASIC3<sup>-/-</sup> mice than in littermate wildtype ASIC3<sup>+/+</sup> mice, a result consistent with the pharmacological experiments with ASIC channel blockers. Our findings suggest that ASIC channels are essential for generating SA1 impulses to underlie the sense of touch in the glabrous skin of rodent hindpaws.<b>Significance Statement</b> Merkel cell-neurite complexes (MNCs) are enriched in touch-sensitive areas, including whisker hair follicles and the glabrous skin of the rodent's paws, where tactile stimulation elicits slowly adapting type 1 (SA1) tactile impulses to encode for the sense of touch. Here, using the skin-nerve preparations made from the hindpaw glabrous skin and tibial nerves of rodents and applying the pressure-clamped single-fiber recordings, we have demonstrated that ASIC channels are essential for generating SA1 impulses at MNCs in the glabrous skin of rodent hindpaws. Thus, ASIC channels at MNCs may play a key role in the sense of touch to the skin of mammals.</p>\",\"PeriodicalId\":50114,\"journal\":{\"name\":\"Journal of Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/JNEUROSCI.0885-24.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.0885-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Acid-sensing ion channels drive the generation of tactile impulses in Merkel cell-neurite complexes of the glabrous skin of rodent hindpaws.
Merkel cell-neurite complexes (MNCs) are enriched in touch-sensitive areas, including whisker hair follicles and the glabrous skin of the rodent's paws, where tactile stimulation elicits slowly adapting type 1 (SA1) tactile impulses to encode for the sense of touch. Recently, we have shown with rodent whisker hair follicles that SA1 impulses are generated through fast excitatory synaptic transmission at MNCs and driven by acid-sensing ion channels (ASICs). However, it is currently unknown whether, besides whisker hair follicles, ASICs also play an essential role in generating SA1 impulses from MNCs of other body parts in mammals. In the present study, we attempted to address this question by using the skin-nerve preparations made from the hindpaw glabrous skin and tibial nerves of both male and female rodents and applying the pressure-clamped single-fiber recordings. We showed that SA1 impulses elicited by tactile stimulation to the rat hindpaw glabrous skin were largely diminished in the presence of amiloride and diminazene, two ASIC channel blockers. Furthermore, using the hindpaw glabrous skin and tibial nerve preparations made from the mice genetically deleted of ASIC3 channels (ASIC3-/-), we showed that the frequency of SA1 impulses was significantly lower in ASIC3-/- mice than in littermate wildtype ASIC3+/+ mice, a result consistent with the pharmacological experiments with ASIC channel blockers. Our findings suggest that ASIC channels are essential for generating SA1 impulses to underlie the sense of touch in the glabrous skin of rodent hindpaws.Significance Statement Merkel cell-neurite complexes (MNCs) are enriched in touch-sensitive areas, including whisker hair follicles and the glabrous skin of the rodent's paws, where tactile stimulation elicits slowly adapting type 1 (SA1) tactile impulses to encode for the sense of touch. Here, using the skin-nerve preparations made from the hindpaw glabrous skin and tibial nerves of rodents and applying the pressure-clamped single-fiber recordings, we have demonstrated that ASIC channels are essential for generating SA1 impulses at MNCs in the glabrous skin of rodent hindpaws. Thus, ASIC channels at MNCs may play a key role in the sense of touch to the skin of mammals.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles