Marcela Riveros Angel, Bernard Séguin, Christiane V Löhr, Tomasz M Beer, John Feliciano, Stephen A Ramsey, George V Thomas
{"title":"犬和人类前列腺癌的转录组比较确定了阉割抗性的介质。","authors":"Marcela Riveros Angel, Bernard Séguin, Christiane V Löhr, Tomasz M Beer, John Feliciano, Stephen A Ramsey, George V Thomas","doi":"10.1111/vco.13017","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer continues to be one of the most lethal cancers in men. While androgen deprivation therapy is initially effective in treating prostate cancer, most cases of advanced prostate cancer eventually progress to castration-resistant prostate cancer (CRPC), which is incurable. Similarly, the most aggressive form of prostatic carcinoma occurs in dogs that have been castrated. To identify molecular similarities between canine prostate cancer and human CRPC, we performed a comparative analysis of gene expression profiles. Through this transcriptomic analysis, we found that prostatic carcinoma in castrated dogs demonstrates an androgen-indifferent phenotype, characterised by low-androgen receptor and neuroendocrine-associated genes. Notably, we identified two genes, ISG15 and AZGP1, that were consistently up- and down-regulated, respectively, in both canine prostatic carcinoma and human CRPC. Additionally, we identified several other genes, including GPX3, S100P and IFITM1, that exhibited similar expression patterns in both species. Protein-protein interaction network analysis demonstrated that these five genes were part of a larger network of interferon-induced genes, suggesting that they may act together in signalling pathways that are disrupted in prostate cancer. Accordingly, our findings suggest that the interferon pathway may play a role in the development and progression of CRPC in both dogs and humans and chart a new therapeutic approach.</p>","PeriodicalId":23693,"journal":{"name":"Veterinary and comparative oncology","volume":" ","pages":"629-640"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Transcriptomes of Canine and Human Prostate Cancers Identify Mediators of Castration Resistance.\",\"authors\":\"Marcela Riveros Angel, Bernard Séguin, Christiane V Löhr, Tomasz M Beer, John Feliciano, Stephen A Ramsey, George V Thomas\",\"doi\":\"10.1111/vco.13017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer continues to be one of the most lethal cancers in men. While androgen deprivation therapy is initially effective in treating prostate cancer, most cases of advanced prostate cancer eventually progress to castration-resistant prostate cancer (CRPC), which is incurable. Similarly, the most aggressive form of prostatic carcinoma occurs in dogs that have been castrated. To identify molecular similarities between canine prostate cancer and human CRPC, we performed a comparative analysis of gene expression profiles. Through this transcriptomic analysis, we found that prostatic carcinoma in castrated dogs demonstrates an androgen-indifferent phenotype, characterised by low-androgen receptor and neuroendocrine-associated genes. Notably, we identified two genes, ISG15 and AZGP1, that were consistently up- and down-regulated, respectively, in both canine prostatic carcinoma and human CRPC. Additionally, we identified several other genes, including GPX3, S100P and IFITM1, that exhibited similar expression patterns in both species. Protein-protein interaction network analysis demonstrated that these five genes were part of a larger network of interferon-induced genes, suggesting that they may act together in signalling pathways that are disrupted in prostate cancer. Accordingly, our findings suggest that the interferon pathway may play a role in the development and progression of CRPC in both dogs and humans and chart a new therapeutic approach.</p>\",\"PeriodicalId\":23693,\"journal\":{\"name\":\"Veterinary and comparative oncology\",\"volume\":\" \",\"pages\":\"629-640\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary and comparative oncology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/vco.13017\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary and comparative oncology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/vco.13017","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Comparative Transcriptomes of Canine and Human Prostate Cancers Identify Mediators of Castration Resistance.
Prostate cancer continues to be one of the most lethal cancers in men. While androgen deprivation therapy is initially effective in treating prostate cancer, most cases of advanced prostate cancer eventually progress to castration-resistant prostate cancer (CRPC), which is incurable. Similarly, the most aggressive form of prostatic carcinoma occurs in dogs that have been castrated. To identify molecular similarities between canine prostate cancer and human CRPC, we performed a comparative analysis of gene expression profiles. Through this transcriptomic analysis, we found that prostatic carcinoma in castrated dogs demonstrates an androgen-indifferent phenotype, characterised by low-androgen receptor and neuroendocrine-associated genes. Notably, we identified two genes, ISG15 and AZGP1, that were consistently up- and down-regulated, respectively, in both canine prostatic carcinoma and human CRPC. Additionally, we identified several other genes, including GPX3, S100P and IFITM1, that exhibited similar expression patterns in both species. Protein-protein interaction network analysis demonstrated that these five genes were part of a larger network of interferon-induced genes, suggesting that they may act together in signalling pathways that are disrupted in prostate cancer. Accordingly, our findings suggest that the interferon pathway may play a role in the development and progression of CRPC in both dogs and humans and chart a new therapeutic approach.
期刊介绍:
Veterinary and Comparative Oncology (VCO) is an international, peer-reviewed journal integrating clinical and scientific information from a variety of related disciplines and from worldwide sources for all veterinary oncologists and cancer researchers concerned with aetiology, diagnosis and clinical course of cancer in domestic animals and its prevention. With the ultimate aim of diminishing suffering from cancer, the journal supports the transfer of knowledge in all aspects of veterinary oncology, from the application of new laboratory technology to cancer prevention, early detection, diagnosis and therapy. In addition to original articles, the journal publishes solicited editorials, review articles, commentary, correspondence and abstracts from the published literature. Accordingly, studies describing laboratory work performed exclusively in purpose-bred domestic animals (e.g. dogs, cats, horses) will not be considered.