Gonçalo Farias, William J Ganley, Robert Price, Denise S Conti, Sharad Mangal, Elizabeth Bielski, Bryan Newman, Jagdeep Shur
{"title":"利用正交分析技术确定干粉吸入剂配方的微观结构特征","authors":"Gonçalo Farias, William J Ganley, Robert Price, Denise S Conti, Sharad Mangal, Elizabeth Bielski, Bryan Newman, Jagdeep Shur","doi":"10.1007/s11095-024-03776-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>For locally-acting dry powder inhalers (DPIs), developing novel analytical tools that are able to evaluate the state of aggregation may provide a better understanding of the impact of material properties and processing parameters on the in vivo performance. This study explored the utility of the Morphologically-Directed Raman Spectroscopy (MDRS) and dissolution as orthogonal techniques to assess microstructural equivalence of the aerosolized dose of DPIs collected with an aerosol collection device.</p><p><strong>Methods: </strong>Commercial DPIs containing different strengths of Fluticasone Propionate (FP) and Salmeterol Xinafoate (SX) as monotherapy and combination products were sourced from different regions. These inhalers were compared with aerodynamic particle size distribution (APSD), dissolution, and MDRS studies.</p><p><strong>Results: </strong>APSD testing alone might not be able to explain differences reported elsewhere in in vivo studies of commercial FP/SX drug products with different Advair® strengths and/or batches. Dissolution studies demonstrated different dissolution rates between Seretide™ 100/50 and Advair® 100/50, whereas Flixotide™ 100 and Flovent® 100 had similar dissolution rates between each other. These differences in dissolution profiles were supported by MDRS results: the dissolution rate is increased if the fraction of FP associated with high soluble components is increased. Principle component analysis was used to identify the agglomerate classes that better discriminate different products.</p><p><strong>Conclusions: </strong>MDRS and dissolution studies of the aerosolized dose of DPIs were successfully used as orthogonal techniques. This study highlights the importance of further assessing in vitro tools that are able to provide a bridge between material attributes or process parameters and in vivo performance.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":"2015-2029"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530509/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microstructural Characterization of Dry Powder Inhaler Formulations Using Orthogonal Analytical Techniques.\",\"authors\":\"Gonçalo Farias, William J Ganley, Robert Price, Denise S Conti, Sharad Mangal, Elizabeth Bielski, Bryan Newman, Jagdeep Shur\",\"doi\":\"10.1007/s11095-024-03776-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>For locally-acting dry powder inhalers (DPIs), developing novel analytical tools that are able to evaluate the state of aggregation may provide a better understanding of the impact of material properties and processing parameters on the in vivo performance. This study explored the utility of the Morphologically-Directed Raman Spectroscopy (MDRS) and dissolution as orthogonal techniques to assess microstructural equivalence of the aerosolized dose of DPIs collected with an aerosol collection device.</p><p><strong>Methods: </strong>Commercial DPIs containing different strengths of Fluticasone Propionate (FP) and Salmeterol Xinafoate (SX) as monotherapy and combination products were sourced from different regions. These inhalers were compared with aerodynamic particle size distribution (APSD), dissolution, and MDRS studies.</p><p><strong>Results: </strong>APSD testing alone might not be able to explain differences reported elsewhere in in vivo studies of commercial FP/SX drug products with different Advair® strengths and/or batches. Dissolution studies demonstrated different dissolution rates between Seretide™ 100/50 and Advair® 100/50, whereas Flixotide™ 100 and Flovent® 100 had similar dissolution rates between each other. These differences in dissolution profiles were supported by MDRS results: the dissolution rate is increased if the fraction of FP associated with high soluble components is increased. Principle component analysis was used to identify the agglomerate classes that better discriminate different products.</p><p><strong>Conclusions: </strong>MDRS and dissolution studies of the aerosolized dose of DPIs were successfully used as orthogonal techniques. This study highlights the importance of further assessing in vitro tools that are able to provide a bridge between material attributes or process parameters and in vivo performance.</p>\",\"PeriodicalId\":20027,\"journal\":{\"name\":\"Pharmaceutical Research\",\"volume\":\" \",\"pages\":\"2015-2029\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530509/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11095-024-03776-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-024-03776-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructural Characterization of Dry Powder Inhaler Formulations Using Orthogonal Analytical Techniques.
Purpose: For locally-acting dry powder inhalers (DPIs), developing novel analytical tools that are able to evaluate the state of aggregation may provide a better understanding of the impact of material properties and processing parameters on the in vivo performance. This study explored the utility of the Morphologically-Directed Raman Spectroscopy (MDRS) and dissolution as orthogonal techniques to assess microstructural equivalence of the aerosolized dose of DPIs collected with an aerosol collection device.
Methods: Commercial DPIs containing different strengths of Fluticasone Propionate (FP) and Salmeterol Xinafoate (SX) as monotherapy and combination products were sourced from different regions. These inhalers were compared with aerodynamic particle size distribution (APSD), dissolution, and MDRS studies.
Results: APSD testing alone might not be able to explain differences reported elsewhere in in vivo studies of commercial FP/SX drug products with different Advair® strengths and/or batches. Dissolution studies demonstrated different dissolution rates between Seretide™ 100/50 and Advair® 100/50, whereas Flixotide™ 100 and Flovent® 100 had similar dissolution rates between each other. These differences in dissolution profiles were supported by MDRS results: the dissolution rate is increased if the fraction of FP associated with high soluble components is increased. Principle component analysis was used to identify the agglomerate classes that better discriminate different products.
Conclusions: MDRS and dissolution studies of the aerosolized dose of DPIs were successfully used as orthogonal techniques. This study highlights the importance of further assessing in vitro tools that are able to provide a bridge between material attributes or process parameters and in vivo performance.
期刊介绍:
Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to:
-(pre)formulation engineering and processing-
computational biopharmaceutics-
drug delivery and targeting-
molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)-
pharmacokinetics, pharmacodynamics and pharmacogenetics.
Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.