低场磁共振成像:提高信噪比的软件解决方案综述。

IF 2.7 4区 医学 Q2 BIOPHYSICS
NMR in Biomedicine Pub Date : 2025-01-01 Epub Date: 2024-10-07 DOI:10.1002/nbm.5268
Reina Ayde, Marc Vornehm, Yujiao Zhao, Florian Knoll, Ed X Wu, Mathieu Sarracanie
{"title":"低场磁共振成像:提高信噪比的软件解决方案综述。","authors":"Reina Ayde, Marc Vornehm, Yujiao Zhao, Florian Knoll, Ed X Wu, Mathieu Sarracanie","doi":"10.1002/nbm.5268","DOIUrl":null,"url":null,"abstract":"<p><p>Low magnetic field magnetic resonance imaging (MRI) ( <math> <semantics> <mrow><msub><mi>B</mi> <mn>0</mn></msub> </mrow> <annotation>$$ {B}_0 $$</annotation></semantics> </math>  < 1 T) is regaining interest in the magnetic resonance (MR) community as a complementary, more flexible, and cost-effective approach to MRI diagnosis. Yet, the impaired signal-to-noise ratio (SNR) per square root of time, or SNR efficiency, leading in turn to prolonged acquisition times, still challenges its relevance at the clinical level. To address this, researchers investigate various hardware and software solutions to improve SNR efficiency at low field, including the leveraging of latest advances in computing hardware. However, there may not be a single recipe for improving SNR at low field, and it is key to embrace the challenges and limitations of each proposed solution. In other words, suitable solutions depend on the final objective or application envisioned for a low-field scanner and, more importantly, on the characteristics of a specific low <math> <semantics> <mrow><msub><mi>B</mi> <mn>0</mn></msub> </mrow> <annotation>$$ {B}_0 $$</annotation></semantics> </math> field. In this review, we aim to provide an overview on software solutions to improve SNR efficiency at low field. First, we cover techniques for efficient k-space sampling and reconstruction. Then, we present post-acquisition techniques that enhance MR images such as denoising and super-resolution. In addition, we summarize recently introduced electromagnetic interference cancellation approaches showing great promises when operating in shielding-free environments. Finally, we discuss the advantages and limitations of these approaches that could provide directions for future applications.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5268"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605168/pdf/","citationCount":"0","resultStr":"{\"title\":\"MRI at low field: A review of software solutions for improving SNR.\",\"authors\":\"Reina Ayde, Marc Vornehm, Yujiao Zhao, Florian Knoll, Ed X Wu, Mathieu Sarracanie\",\"doi\":\"10.1002/nbm.5268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low magnetic field magnetic resonance imaging (MRI) ( <math> <semantics> <mrow><msub><mi>B</mi> <mn>0</mn></msub> </mrow> <annotation>$$ {B}_0 $$</annotation></semantics> </math>  < 1 T) is regaining interest in the magnetic resonance (MR) community as a complementary, more flexible, and cost-effective approach to MRI diagnosis. Yet, the impaired signal-to-noise ratio (SNR) per square root of time, or SNR efficiency, leading in turn to prolonged acquisition times, still challenges its relevance at the clinical level. To address this, researchers investigate various hardware and software solutions to improve SNR efficiency at low field, including the leveraging of latest advances in computing hardware. However, there may not be a single recipe for improving SNR at low field, and it is key to embrace the challenges and limitations of each proposed solution. In other words, suitable solutions depend on the final objective or application envisioned for a low-field scanner and, more importantly, on the characteristics of a specific low <math> <semantics> <mrow><msub><mi>B</mi> <mn>0</mn></msub> </mrow> <annotation>$$ {B}_0 $$</annotation></semantics> </math> field. In this review, we aim to provide an overview on software solutions to improve SNR efficiency at low field. First, we cover techniques for efficient k-space sampling and reconstruction. Then, we present post-acquisition techniques that enhance MR images such as denoising and super-resolution. In addition, we summarize recently introduced electromagnetic interference cancellation approaches showing great promises when operating in shielding-free environments. Finally, we discuss the advantages and limitations of these approaches that could provide directions for future applications.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\" \",\"pages\":\"e5268\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605168/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.5268\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5268","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

低磁场磁共振成像(MRI)(B 0 $$ {B}_0 $$ B 0 $$ {B}_0 $$ 磁场。在本综述中,我们旨在概述提高低磁场信噪比效率的软件解决方案。首先,我们将介绍高效 k 空间采样和重建技术。然后,我们介绍了增强磁共振图像的采集后技术,如去噪和超分辨率。此外,我们还总结了最近推出的电磁干扰消除方法,这些方法在无屏蔽环境中运行时大有可为。最后,我们讨论了这些方法的优势和局限性,为未来的应用提供了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MRI at low field: A review of software solutions for improving SNR.

Low magnetic field magnetic resonance imaging (MRI) ( B 0 $$ {B}_0 $$  < 1 T) is regaining interest in the magnetic resonance (MR) community as a complementary, more flexible, and cost-effective approach to MRI diagnosis. Yet, the impaired signal-to-noise ratio (SNR) per square root of time, or SNR efficiency, leading in turn to prolonged acquisition times, still challenges its relevance at the clinical level. To address this, researchers investigate various hardware and software solutions to improve SNR efficiency at low field, including the leveraging of latest advances in computing hardware. However, there may not be a single recipe for improving SNR at low field, and it is key to embrace the challenges and limitations of each proposed solution. In other words, suitable solutions depend on the final objective or application envisioned for a low-field scanner and, more importantly, on the characteristics of a specific low B 0 $$ {B}_0 $$ field. In this review, we aim to provide an overview on software solutions to improve SNR efficiency at low field. First, we cover techniques for efficient k-space sampling and reconstruction. Then, we present post-acquisition techniques that enhance MR images such as denoising and super-resolution. In addition, we summarize recently introduced electromagnetic interference cancellation approaches showing great promises when operating in shielding-free environments. Finally, we discuss the advantages and limitations of these approaches that could provide directions for future applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信