{"title":"DNA 聚合酶 ε 会在甲基化的 CpG 二核苷酸上产生较高的 C-T 突变。","authors":"","doi":"10.1038/s41588-024-01946-w","DOIUrl":null,"url":null,"abstract":"C-to-T mutations in CpG dinucleotides are widespread in cancers and are also observed in normal cells. By developing and using a technique to quantify DNA polymerase errors (polymerase error rate sequencing, PER-seq), we reveal that C-to-T mutations in CpG dinucleotides constitute part of the error signature of both wild-type and mutant cancer-associated DNA polymerase ε.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"56 11","pages":"2304-2305"},"PeriodicalIF":31.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA polymerase ε produces elevated C-to-T mutations at methylated CpG dinucleotides\",\"authors\":\"\",\"doi\":\"10.1038/s41588-024-01946-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"C-to-T mutations in CpG dinucleotides are widespread in cancers and are also observed in normal cells. By developing and using a technique to quantify DNA polymerase errors (polymerase error rate sequencing, PER-seq), we reveal that C-to-T mutations in CpG dinucleotides constitute part of the error signature of both wild-type and mutant cancer-associated DNA polymerase ε.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"56 11\",\"pages\":\"2304-2305\"},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-024-01946-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-024-01946-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
DNA polymerase ε produces elevated C-to-T mutations at methylated CpG dinucleotides
C-to-T mutations in CpG dinucleotides are widespread in cancers and are also observed in normal cells. By developing and using a technique to quantify DNA polymerase errors (polymerase error rate sequencing, PER-seq), we reveal that C-to-T mutations in CpG dinucleotides constitute part of the error signature of both wild-type and mutant cancer-associated DNA polymerase ε.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution