融合色彩校正和 HSV 分段技术自动分段急性淋巴细胞白血病

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
F E Al-Tahhan, Emam Omar
{"title":"融合色彩校正和 HSV 分段技术自动分段急性淋巴细胞白血病","authors":"F E Al-Tahhan, Emam Omar","doi":"10.1002/jemt.24706","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents an enhanced segmentation methodology for the accurate detection of acute lymphoblastic leukemia (ALL) in blood smear images. The proposed approach integrates color correction techniques with HSV color space segmentation to improve white blood cell analysis. Our method addresses common challenges in microscopic image processing, including sensor nonlinearity, uneven illumination, and color distortions. The key objectives of this study are to develop a robust preprocessing pipeline that normalizes blood smear images for consistent analysis, implement an HSV-based segmentation technique optimized for leukocyte detection, and validate the method's effectiveness across various ALL subtypes using clinical samples. The proposed technique was evaluated using real-world blood smear samples from ALL patients. Quantitative analysis demonstrates significant improvements in segmentation accuracy compared to traditional methods. Our approach shows strong capability in reliably detecting and segmenting ALL subtypes, offering the potential for enhanced diagnostic support in clinical settings.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusion of Color Correction and HSV Segmentation Techniques for Automated Segmentation of Acute Lymphoblastic Leukemia.\",\"authors\":\"F E Al-Tahhan, Emam Omar\",\"doi\":\"10.1002/jemt.24706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article presents an enhanced segmentation methodology for the accurate detection of acute lymphoblastic leukemia (ALL) in blood smear images. The proposed approach integrates color correction techniques with HSV color space segmentation to improve white blood cell analysis. Our method addresses common challenges in microscopic image processing, including sensor nonlinearity, uneven illumination, and color distortions. The key objectives of this study are to develop a robust preprocessing pipeline that normalizes blood smear images for consistent analysis, implement an HSV-based segmentation technique optimized for leukocyte detection, and validate the method's effectiveness across various ALL subtypes using clinical samples. The proposed technique was evaluated using real-world blood smear samples from ALL patients. Quantitative analysis demonstrates significant improvements in segmentation accuracy compared to traditional methods. Our approach shows strong capability in reliably detecting and segmenting ALL subtypes, offering the potential for enhanced diagnostic support in clinical settings.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.24706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种增强型分割方法,用于准确检测血液涂片图像中的急性淋巴细胞白血病(ALL)。所提出的方法将色彩校正技术与 HSV 色彩空间分割技术相结合,以改进白细胞分析。我们的方法解决了显微图像处理中常见的难题,包括传感器非线性、光照不均和色彩失真。本研究的主要目标是开发一种稳健的预处理管道,对血液涂片图像进行归一化处理,以实现一致的分析;实施一种基于 HSV 的分割技术,该技术针对白细胞检测进行了优化;利用临床样本验证该方法在各种 ALL 亚型中的有效性。我们使用来自 ALL 患者的真实血涂片样本对所提出的技术进行了评估。定量分析结果表明,与传统方法相比,我们的方法显著提高了分割准确性。我们的方法在可靠地检测和分割 ALL 亚型方面显示出强大的能力,为增强临床诊断支持提供了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fusion of Color Correction and HSV Segmentation Techniques for Automated Segmentation of Acute Lymphoblastic Leukemia.

This article presents an enhanced segmentation methodology for the accurate detection of acute lymphoblastic leukemia (ALL) in blood smear images. The proposed approach integrates color correction techniques with HSV color space segmentation to improve white blood cell analysis. Our method addresses common challenges in microscopic image processing, including sensor nonlinearity, uneven illumination, and color distortions. The key objectives of this study are to develop a robust preprocessing pipeline that normalizes blood smear images for consistent analysis, implement an HSV-based segmentation technique optimized for leukocyte detection, and validate the method's effectiveness across various ALL subtypes using clinical samples. The proposed technique was evaluated using real-world blood smear samples from ALL patients. Quantitative analysis demonstrates significant improvements in segmentation accuracy compared to traditional methods. Our approach shows strong capability in reliably detecting and segmenting ALL subtypes, offering the potential for enhanced diagnostic support in clinical settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信