{"title":"通过与纳升孔阵列中的水凝胶结合 DNA 探针杂交,对植物组织中的多重 microRNA 进行定量和空间分辨检测。","authors":"Jennifer Fang, Patrick S Doyle","doi":"10.1038/s41378-024-00785-3","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding complex regulatory networks in plant systems requires elucidating the roles of various gene regulators under a spatial landscape. MicroRNA are key regulators that impart high information value through their tissue specificity and stability when using expression patterns for evaluating network outcomes. However, current techniques that utilize spatial multiplexing and quantitation of microRNA are limited to primarily mammalian systems. Here, we present a method to spatially resolve and quantify multiple endogenous microRNA in situ using ethanol fixed, paraffin embedded model plant species. This method utilizes target-specific microRNA capture along with universal ligating and labelling, all within functionalized hydrogel posts containing DNA probes in nanoliter well arrays. We demonstrate the platform's multiplexing capabilities through analyzing three endogenous microRNA in Arabidopsis thaliana rosettes which provide useful answers to fundamental plant growth and development from the unique expression patterns. The spatial tissue technique is also validated using non-spatial small RNA assays to demonstrate the versatility of the well array platform. Our new platform expands the toolkit of spatial omics technologies for plants.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"142"},"PeriodicalIF":7.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458878/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative and spatially resolved detection of multiplexed microRNA from plant tissue via hybridization to hydrogel-bound DNA probes in nanoliter well arrays.\",\"authors\":\"Jennifer Fang, Patrick S Doyle\",\"doi\":\"10.1038/s41378-024-00785-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding complex regulatory networks in plant systems requires elucidating the roles of various gene regulators under a spatial landscape. MicroRNA are key regulators that impart high information value through their tissue specificity and stability when using expression patterns for evaluating network outcomes. However, current techniques that utilize spatial multiplexing and quantitation of microRNA are limited to primarily mammalian systems. Here, we present a method to spatially resolve and quantify multiple endogenous microRNA in situ using ethanol fixed, paraffin embedded model plant species. This method utilizes target-specific microRNA capture along with universal ligating and labelling, all within functionalized hydrogel posts containing DNA probes in nanoliter well arrays. We demonstrate the platform's multiplexing capabilities through analyzing three endogenous microRNA in Arabidopsis thaliana rosettes which provide useful answers to fundamental plant growth and development from the unique expression patterns. The spatial tissue technique is also validated using non-spatial small RNA assays to demonstrate the versatility of the well array platform. Our new platform expands the toolkit of spatial omics technologies for plants.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"10 1\",\"pages\":\"142\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458878/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00785-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00785-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Quantitative and spatially resolved detection of multiplexed microRNA from plant tissue via hybridization to hydrogel-bound DNA probes in nanoliter well arrays.
Understanding complex regulatory networks in plant systems requires elucidating the roles of various gene regulators under a spatial landscape. MicroRNA are key regulators that impart high information value through their tissue specificity and stability when using expression patterns for evaluating network outcomes. However, current techniques that utilize spatial multiplexing and quantitation of microRNA are limited to primarily mammalian systems. Here, we present a method to spatially resolve and quantify multiple endogenous microRNA in situ using ethanol fixed, paraffin embedded model plant species. This method utilizes target-specific microRNA capture along with universal ligating and labelling, all within functionalized hydrogel posts containing DNA probes in nanoliter well arrays. We demonstrate the platform's multiplexing capabilities through analyzing three endogenous microRNA in Arabidopsis thaliana rosettes which provide useful answers to fundamental plant growth and development from the unique expression patterns. The spatial tissue technique is also validated using non-spatial small RNA assays to demonstrate the versatility of the well array platform. Our new platform expands the toolkit of spatial omics technologies for plants.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.