Youngjin Song, In Cheol Jeong, Semin Ryu, Sunghan Lee, Jeonghwan Koh, Seokjue Jeong, Seongmin Park, Munsang Kim, Wonjun Lee, Okhyeon Rye, Yeojin Kim, Sanggyu Lee, Mooeob Ahn, Hyunsuk Kim
{"title":"GAIT-CKD(利用人工智能进行步态分析,为慢性肾病患者提供数字化治疗):设计与方法。","authors":"Youngjin Song, In Cheol Jeong, Semin Ryu, Sunghan Lee, Jeonghwan Koh, Seokjue Jeong, Seongmin Park, Munsang Kim, Wonjun Lee, Okhyeon Rye, Yeojin Kim, Sanggyu Lee, Mooeob Ahn, Hyunsuk Kim","doi":"10.23876/j.krcp.23.273","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Digital therapeutics are emerging as treatments for diseases and disabilities. In chronic kidney disease (CKD), gait is a potential biomarker for health status and intervention effectiveness. This study aims to analyze gait characteristics in CKD patients, providing baseline data for digital therapeutics development.</p><p><strong>Methods: </strong>At baseline and after an 8-week intervention, we performed bioimpedance analysis measurements, the Timed Up and Go, Tinetti, and grip strength tests, and gait analysis in 217 healthy individuals and 276 patients with CKD. Demographic and clinical information was collected, including underlying diseases and medications, laboratory tests, and quality of life satisfaction surveys. Gait analysis was performed using skeleton data, which involved acquiring three-dimensional skeleton data of a walker using a single Kinect sensor. The performance of an artificial intelligence-based classification model in distinguishing between healthy individuals and those with CKD was then investigated. Simultaneously, inertia measurement unit analysis was conducted using measurements taken from the wrist and waist.</p><p><strong>Results: </strong>Most subjects received a health intervention via an app, and their gait was assessed for improvements after an 8-week period. Incidents such as falls, fractures, hospitalizations, and deaths will be investigated in years 1 and 3.</p><p><strong>Conclusion: </strong>This study confirmed that the gaits of healthy individuals and CKD patients were different, and the effect of the 8-week app-based health intervention will be analyzed. The study will yield important baseline data for creating digital therapeutics for CKD patients' diet/exercise in the future.</p>","PeriodicalId":17716,"journal":{"name":"Kidney Research and Clinical Practice","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GAIT-CKD (Gait Analysis using Artificial Intelligence for digital Therapeutics of patients with Chronic Kidney Disease): design and methods.\",\"authors\":\"Youngjin Song, In Cheol Jeong, Semin Ryu, Sunghan Lee, Jeonghwan Koh, Seokjue Jeong, Seongmin Park, Munsang Kim, Wonjun Lee, Okhyeon Rye, Yeojin Kim, Sanggyu Lee, Mooeob Ahn, Hyunsuk Kim\",\"doi\":\"10.23876/j.krcp.23.273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Digital therapeutics are emerging as treatments for diseases and disabilities. In chronic kidney disease (CKD), gait is a potential biomarker for health status and intervention effectiveness. This study aims to analyze gait characteristics in CKD patients, providing baseline data for digital therapeutics development.</p><p><strong>Methods: </strong>At baseline and after an 8-week intervention, we performed bioimpedance analysis measurements, the Timed Up and Go, Tinetti, and grip strength tests, and gait analysis in 217 healthy individuals and 276 patients with CKD. Demographic and clinical information was collected, including underlying diseases and medications, laboratory tests, and quality of life satisfaction surveys. Gait analysis was performed using skeleton data, which involved acquiring three-dimensional skeleton data of a walker using a single Kinect sensor. The performance of an artificial intelligence-based classification model in distinguishing between healthy individuals and those with CKD was then investigated. Simultaneously, inertia measurement unit analysis was conducted using measurements taken from the wrist and waist.</p><p><strong>Results: </strong>Most subjects received a health intervention via an app, and their gait was assessed for improvements after an 8-week period. Incidents such as falls, fractures, hospitalizations, and deaths will be investigated in years 1 and 3.</p><p><strong>Conclusion: </strong>This study confirmed that the gaits of healthy individuals and CKD patients were different, and the effect of the 8-week app-based health intervention will be analyzed. The study will yield important baseline data for creating digital therapeutics for CKD patients' diet/exercise in the future.</p>\",\"PeriodicalId\":17716,\"journal\":{\"name\":\"Kidney Research and Clinical Practice\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kidney Research and Clinical Practice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.23876/j.krcp.23.273\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney Research and Clinical Practice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23876/j.krcp.23.273","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
GAIT-CKD (Gait Analysis using Artificial Intelligence for digital Therapeutics of patients with Chronic Kidney Disease): design and methods.
Background: Digital therapeutics are emerging as treatments for diseases and disabilities. In chronic kidney disease (CKD), gait is a potential biomarker for health status and intervention effectiveness. This study aims to analyze gait characteristics in CKD patients, providing baseline data for digital therapeutics development.
Methods: At baseline and after an 8-week intervention, we performed bioimpedance analysis measurements, the Timed Up and Go, Tinetti, and grip strength tests, and gait analysis in 217 healthy individuals and 276 patients with CKD. Demographic and clinical information was collected, including underlying diseases and medications, laboratory tests, and quality of life satisfaction surveys. Gait analysis was performed using skeleton data, which involved acquiring three-dimensional skeleton data of a walker using a single Kinect sensor. The performance of an artificial intelligence-based classification model in distinguishing between healthy individuals and those with CKD was then investigated. Simultaneously, inertia measurement unit analysis was conducted using measurements taken from the wrist and waist.
Results: Most subjects received a health intervention via an app, and their gait was assessed for improvements after an 8-week period. Incidents such as falls, fractures, hospitalizations, and deaths will be investigated in years 1 and 3.
Conclusion: This study confirmed that the gaits of healthy individuals and CKD patients were different, and the effect of the 8-week app-based health intervention will be analyzed. The study will yield important baseline data for creating digital therapeutics for CKD patients' diet/exercise in the future.
期刊介绍:
Kidney Research and Clinical Practice (formerly The Korean Journal of Nephrology; ISSN 1975-9460, launched in 1982), the official journal of the Korean Society of Nephrology, is an international, peer-reviewed journal published in English. Its ISO abbreviation is Kidney Res Clin Pract. To provide an efficient venue for dissemination of knowledge and discussion of topics related to basic renal science and clinical practice, the journal offers open access (free submission and free access) and considers articles on all aspects of clinical nephrology and hypertension as well as related molecular genetics, anatomy, pathology, physiology, pharmacology, and immunology. In particular, the journal focuses on translational renal research that helps bridging laboratory discovery with the diagnosis and treatment of human kidney disease. Topics covered include basic science with possible clinical applicability and papers on the pathophysiological basis of disease processes of the kidney. Original researches from areas of intervention nephrology or dialysis access are also welcomed. Major article types considered for publication include original research and reviews on current topics of interest. Accepted manuscripts are granted free online open-access immediately after publication, which permits its users to read, download, copy, distribute, print, search, or link to the full texts of its articles to facilitate access to a broad readership. Circulation number of print copies is 1,600.