{"title":"能量中继校对的权衡与热力学。","authors":"Jonas Berx, Karel Proesmans","doi":"10.1098/rsif.2024.0232","DOIUrl":null,"url":null,"abstract":"<p><p>Biological processes that are able to discriminate between different molecules consume energy and dissipate heat, using a mechanism known as proofreading. In this work, we thoroughly analyse the thermodynamic properties of one of the most important proofreading mechanisms, namely Hopfield's energy-relay proofreading. We discover several trade-off relations and scaling laws between several kinetic and thermodynamic observables. These trade-off relations are obtained both analytically and numerically through Pareto optimal fronts. We show that the scheme is able to operate in three distinct regimes: an energy-relay regime, a mixed relay-Michaelis-Menten (MM) regime and a Michaelis-Menten regime, depending on the kinetic and energetic parameters that tune transitions between states. The mixed regime features a dynamical phase transition in the error-entropy production Pareto trade-off, while the pure energy-relay regime contains a region where this type of proofreading energetically outperforms standard kinetic proofreading.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 219","pages":"20240232"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461052/pdf/","citationCount":"0","resultStr":"{\"title\":\"Trade-offs and thermodynamics of energy-relay proofreading.\",\"authors\":\"Jonas Berx, Karel Proesmans\",\"doi\":\"10.1098/rsif.2024.0232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological processes that are able to discriminate between different molecules consume energy and dissipate heat, using a mechanism known as proofreading. In this work, we thoroughly analyse the thermodynamic properties of one of the most important proofreading mechanisms, namely Hopfield's energy-relay proofreading. We discover several trade-off relations and scaling laws between several kinetic and thermodynamic observables. These trade-off relations are obtained both analytically and numerically through Pareto optimal fronts. We show that the scheme is able to operate in three distinct regimes: an energy-relay regime, a mixed relay-Michaelis-Menten (MM) regime and a Michaelis-Menten regime, depending on the kinetic and energetic parameters that tune transitions between states. The mixed regime features a dynamical phase transition in the error-entropy production Pareto trade-off, while the pure energy-relay regime contains a region where this type of proofreading energetically outperforms standard kinetic proofreading.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"21 219\",\"pages\":\"20240232\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461052/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0232\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0232","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Trade-offs and thermodynamics of energy-relay proofreading.
Biological processes that are able to discriminate between different molecules consume energy and dissipate heat, using a mechanism known as proofreading. In this work, we thoroughly analyse the thermodynamic properties of one of the most important proofreading mechanisms, namely Hopfield's energy-relay proofreading. We discover several trade-off relations and scaling laws between several kinetic and thermodynamic observables. These trade-off relations are obtained both analytically and numerically through Pareto optimal fronts. We show that the scheme is able to operate in three distinct regimes: an energy-relay regime, a mixed relay-Michaelis-Menten (MM) regime and a Michaelis-Menten regime, depending on the kinetic and energetic parameters that tune transitions between states. The mixed regime features a dynamical phase transition in the error-entropy production Pareto trade-off, while the pure energy-relay regime contains a region where this type of proofreading energetically outperforms standard kinetic proofreading.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.