Mary Rao , Januana S. Teixeira , Annika Flint, Sandeep Tamber
{"title":"从加拿大零售的贻贝和牡蛎贝壳中分离出的抗生素耐药气单胞菌的危害特征。","authors":"Mary Rao , Januana S. Teixeira , Annika Flint, Sandeep Tamber","doi":"10.1016/j.jfp.2024.100374","DOIUrl":null,"url":null,"abstract":"<div><div>Surveillance and monitoring of foods for the presence of antimicrobial-resistant (AMR) bacteria are required to assess the risks these bacteria pose to human health. Frequently consumed raw or lightly cooked, live bivalve shellfish such as mussels and oysters can be a source of exposure to AMR bacteria. This study sought to determine the prevalence of third-generation cephalosporin (3GC) and carbapenem-resistant bacteria in live mussel and oyster shellstock available for retail purchase through the course of one calendar year. Just over half of the 180 samples (52%) tested positive for the presence of 3GC-resistant bacteria belonging to thirty distinct bacterial species. Speciation of the isolates was carried out using the Bruker MALDI Biotyper. <em>Serratia</em> spp., <em>Aeromonas</em> spp., and <em>Rahnella</em> spp. were the most frequently isolated groups of bacteria. Antibiotic resistance testing confirmed reduced susceptibility for 3GCs and/or carbapenems in 15 of the 29 <em>Aeromonas</em> isolates. Based on AMR patterns, and species identity, a subset of ten <em>Aeromonas</em> strains was chosen for further characterization by whole genome sequence analysis. Genomic analysis revealed the presence of multiple antibiotic resistance and virulence genes. A number of mobile genetic elements were also identified indicating the potential for horizontal gene transfer. Differences in gene detection by the bioinformatic tools and databases used (ResFinder. CARD RGI, PlasmidFinder, and MobSuite) are discussed. This study highlights the strengths and limitations of using genomics tools to perform hazard characterization of diverse foodborne bacterial species.</div></div>","PeriodicalId":15903,"journal":{"name":"Journal of food protection","volume":"87 11","pages":"Article 100374"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hazard Characterization of Antibiotic-resistant Aeromonas spp. Isolated from Mussel and Oyster Shellstock Available for Retail Purchase in Canada\",\"authors\":\"Mary Rao , Januana S. Teixeira , Annika Flint, Sandeep Tamber\",\"doi\":\"10.1016/j.jfp.2024.100374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Surveillance and monitoring of foods for the presence of antimicrobial-resistant (AMR) bacteria are required to assess the risks these bacteria pose to human health. Frequently consumed raw or lightly cooked, live bivalve shellfish such as mussels and oysters can be a source of exposure to AMR bacteria. This study sought to determine the prevalence of third-generation cephalosporin (3GC) and carbapenem-resistant bacteria in live mussel and oyster shellstock available for retail purchase through the course of one calendar year. Just over half of the 180 samples (52%) tested positive for the presence of 3GC-resistant bacteria belonging to thirty distinct bacterial species. Speciation of the isolates was carried out using the Bruker MALDI Biotyper. <em>Serratia</em> spp., <em>Aeromonas</em> spp., and <em>Rahnella</em> spp. were the most frequently isolated groups of bacteria. Antibiotic resistance testing confirmed reduced susceptibility for 3GCs and/or carbapenems in 15 of the 29 <em>Aeromonas</em> isolates. Based on AMR patterns, and species identity, a subset of ten <em>Aeromonas</em> strains was chosen for further characterization by whole genome sequence analysis. Genomic analysis revealed the presence of multiple antibiotic resistance and virulence genes. A number of mobile genetic elements were also identified indicating the potential for horizontal gene transfer. Differences in gene detection by the bioinformatic tools and databases used (ResFinder. CARD RGI, PlasmidFinder, and MobSuite) are discussed. This study highlights the strengths and limitations of using genomics tools to perform hazard characterization of diverse foodborne bacterial species.</div></div>\",\"PeriodicalId\":15903,\"journal\":{\"name\":\"Journal of food protection\",\"volume\":\"87 11\",\"pages\":\"Article 100374\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of food protection\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362028X24001583\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of food protection","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362028X24001583","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Hazard Characterization of Antibiotic-resistant Aeromonas spp. Isolated from Mussel and Oyster Shellstock Available for Retail Purchase in Canada
Surveillance and monitoring of foods for the presence of antimicrobial-resistant (AMR) bacteria are required to assess the risks these bacteria pose to human health. Frequently consumed raw or lightly cooked, live bivalve shellfish such as mussels and oysters can be a source of exposure to AMR bacteria. This study sought to determine the prevalence of third-generation cephalosporin (3GC) and carbapenem-resistant bacteria in live mussel and oyster shellstock available for retail purchase through the course of one calendar year. Just over half of the 180 samples (52%) tested positive for the presence of 3GC-resistant bacteria belonging to thirty distinct bacterial species. Speciation of the isolates was carried out using the Bruker MALDI Biotyper. Serratia spp., Aeromonas spp., and Rahnella spp. were the most frequently isolated groups of bacteria. Antibiotic resistance testing confirmed reduced susceptibility for 3GCs and/or carbapenems in 15 of the 29 Aeromonas isolates. Based on AMR patterns, and species identity, a subset of ten Aeromonas strains was chosen for further characterization by whole genome sequence analysis. Genomic analysis revealed the presence of multiple antibiotic resistance and virulence genes. A number of mobile genetic elements were also identified indicating the potential for horizontal gene transfer. Differences in gene detection by the bioinformatic tools and databases used (ResFinder. CARD RGI, PlasmidFinder, and MobSuite) are discussed. This study highlights the strengths and limitations of using genomics tools to perform hazard characterization of diverse foodborne bacterial species.
期刊介绍:
The Journal of Food Protection® (JFP) is an international, monthly scientific journal in the English language published by the International Association for Food Protection (IAFP). JFP publishes research and review articles on all aspects of food protection and safety. Major emphases of JFP are placed on studies dealing with:
Tracking, detecting (including traditional, molecular, and real-time), inactivating, and controlling food-related hazards, including microorganisms (including antibiotic resistance), microbial (mycotoxins, seafood toxins) and non-microbial toxins (heavy metals, pesticides, veterinary drug residues, migrants from food packaging, and processing contaminants), allergens and pests (insects, rodents) in human food, pet food and animal feed throughout the food chain;
Microbiological food quality and traditional/novel methods to assay microbiological food quality;
Prevention of food-related hazards and food spoilage through food preservatives and thermal/non-thermal processes, including process validation;
Food fermentations and food-related probiotics;
Safe food handling practices during pre-harvest, harvest, post-harvest, distribution and consumption, including food safety education for retailers, foodservice, and consumers;
Risk assessments for food-related hazards;
Economic impact of food-related hazards, foodborne illness, food loss, food spoilage, and adulterated foods;
Food fraud, food authentication, food defense, and foodborne disease outbreak investigations.