Lei Wang , Tamta Tkhilaishvili , Zheng Jiang , Rima Fanaei Pirlar , Yu Ning , Adrián Millán Laleona , Jiaxing Wang , Jin Tang , Qiaojie Wang , Andrej Trampuz , Mercedes Gonzalez Moreno , Xianlong Zhang
{"title":"用于消除骨科生物膜的噬菌体-脂质体纳米共轭物。","authors":"Lei Wang , Tamta Tkhilaishvili , Zheng Jiang , Rima Fanaei Pirlar , Yu Ning , Adrián Millán Laleona , Jiaxing Wang , Jin Tang , Qiaojie Wang , Andrej Trampuz , Mercedes Gonzalez Moreno , Xianlong Zhang","doi":"10.1016/j.jconrel.2024.09.049","DOIUrl":null,"url":null,"abstract":"<div><div>Infection by multidrug-resistant (MDR) bacteria has become one of the biggest threats to public health worldwide. One reason for the difficulty in treatment is the lack of proper delivery strategies into MDR bacterial biofilms, where the thick extracellular polymeric substance (EPS) layer impedes the penetration of antibiotics and nanoparticles. Here, we propose a novel bioactive nanoconjugate of drug-loaded liposomes and bacteriophages for targeted eradication of the MDR biofilms in orthopedic infections. Phage Sb-1, which has the ability to degrade EPS, was conjugated with antibiotic-loaded liposomes. Upon encountering the biofilm, phage Sb-1 degrades the EPS structure, thereby increasing the sensitivity of bacteria to antibiotics and allowing the antibiotics to penetrate deeply into the biofilm. As a result, effective removal of MDR bacterial biofilm was achieved with low dose of antibiotics, which was proved in this study by both <em>in vitro</em> and <em>in vivo</em> investigations. Notably, in the rat prosthetic joint infection (PJI) model, we found that the liposome-phage nanoconjugates could effectively decrease the bacterial load in the infected area and significantly promote osteomyelitis recovery. It is therefore believed that the conjugation of bacteriophage and liposomes could open new possibilities for the treatment of orthopedic infections, possibly other infections in the deep tissues.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"376 ","pages":"Pages 949-960"},"PeriodicalIF":10.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phage-liposome nanoconjugates for orthopedic biofilm eradication\",\"authors\":\"Lei Wang , Tamta Tkhilaishvili , Zheng Jiang , Rima Fanaei Pirlar , Yu Ning , Adrián Millán Laleona , Jiaxing Wang , Jin Tang , Qiaojie Wang , Andrej Trampuz , Mercedes Gonzalez Moreno , Xianlong Zhang\",\"doi\":\"10.1016/j.jconrel.2024.09.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Infection by multidrug-resistant (MDR) bacteria has become one of the biggest threats to public health worldwide. One reason for the difficulty in treatment is the lack of proper delivery strategies into MDR bacterial biofilms, where the thick extracellular polymeric substance (EPS) layer impedes the penetration of antibiotics and nanoparticles. Here, we propose a novel bioactive nanoconjugate of drug-loaded liposomes and bacteriophages for targeted eradication of the MDR biofilms in orthopedic infections. Phage Sb-1, which has the ability to degrade EPS, was conjugated with antibiotic-loaded liposomes. Upon encountering the biofilm, phage Sb-1 degrades the EPS structure, thereby increasing the sensitivity of bacteria to antibiotics and allowing the antibiotics to penetrate deeply into the biofilm. As a result, effective removal of MDR bacterial biofilm was achieved with low dose of antibiotics, which was proved in this study by both <em>in vitro</em> and <em>in vivo</em> investigations. Notably, in the rat prosthetic joint infection (PJI) model, we found that the liposome-phage nanoconjugates could effectively decrease the bacterial load in the infected area and significantly promote osteomyelitis recovery. It is therefore believed that the conjugation of bacteriophage and liposomes could open new possibilities for the treatment of orthopedic infections, possibly other infections in the deep tissues.</div></div>\",\"PeriodicalId\":15450,\"journal\":{\"name\":\"Journal of Controlled Release\",\"volume\":\"376 \",\"pages\":\"Pages 949-960\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Controlled Release\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016836592400659X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016836592400659X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Phage-liposome nanoconjugates for orthopedic biofilm eradication
Infection by multidrug-resistant (MDR) bacteria has become one of the biggest threats to public health worldwide. One reason for the difficulty in treatment is the lack of proper delivery strategies into MDR bacterial biofilms, where the thick extracellular polymeric substance (EPS) layer impedes the penetration of antibiotics and nanoparticles. Here, we propose a novel bioactive nanoconjugate of drug-loaded liposomes and bacteriophages for targeted eradication of the MDR biofilms in orthopedic infections. Phage Sb-1, which has the ability to degrade EPS, was conjugated with antibiotic-loaded liposomes. Upon encountering the biofilm, phage Sb-1 degrades the EPS structure, thereby increasing the sensitivity of bacteria to antibiotics and allowing the antibiotics to penetrate deeply into the biofilm. As a result, effective removal of MDR bacterial biofilm was achieved with low dose of antibiotics, which was proved in this study by both in vitro and in vivo investigations. Notably, in the rat prosthetic joint infection (PJI) model, we found that the liposome-phage nanoconjugates could effectively decrease the bacterial load in the infected area and significantly promote osteomyelitis recovery. It is therefore believed that the conjugation of bacteriophage and liposomes could open new possibilities for the treatment of orthopedic infections, possibly other infections in the deep tissues.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.