Basant A. Abou-Taleb , Wessam F. El-Hadidy , Inas M. Masoud , Noura A. Matar , Hoda S. Hussein
{"title":"二氢槲皮素纳米颗粒鼻腔凝胶是一种有望改善阿尔茨海默病的配方。","authors":"Basant A. Abou-Taleb , Wessam F. El-Hadidy , Inas M. Masoud , Noura A. Matar , Hoda S. Hussein","doi":"10.1016/j.ijpharm.2024.124814","DOIUrl":null,"url":null,"abstract":"<div><div>Dihydroquercetin is a natural flavonoid with anti-inflammatory, antioxidant, and neuroprotective activities. Dihydroquercetin exhibits a great neuroprotector promise in Alzheimer’s disorder via preventing the aggregation of amyloid-beta-peptide-Aβ(1–42). The goal of the study was to create dihydroquercetin-loaded-chitosan nanoparticles (DHQ-CS NPs) loaded to a mucoadhesive, thermosensitive in-situ gel for direct nasal administration to cure Alzheimer’s disorder. Loading drug in chitosan nanoparticles and incorporation into thermosensitive gel enhanced residence time and reduced mucociliary-clearance. Different in-vitro-physicochemical-characteristics of gels and nanoparticles-characterization were used to evaluate the formulations. The therapeutic effectiveness of DHQ-CS NPs gel was evaluated behaviorally, biochemically and histopathologically in Alzheimer’s-rat-model compared to intranasal DHQ gel. The small particles-size was obtained = 235.3 nm of DHQ-CS NPs. The DHQ-CS NPs gel demonstrated a greater release rate compared to the raw DHQ gel. Additionally, the nasal-administration of the DHQ-CS NPs gel showed better In-vivo results compared to DHQ gel, through improvement of memory and learning deficits and also the exploratory behavior and new object memory in streptozotocin induced-Alzheimer rats. Biochemically, the intranasal DHQ-CS NPs gel, showed reduced both Aβ-protein formation and tau protein hyperphosphorylation, inhibition of acetylcholine esterase activity and oxidative stress in the brain with increase of total antioxidants in the brain and serum, compared to DHQ gel. Histopathologically, the DHQ-CS NPs nasal gel produced improvement in the hippocampal and cerebral cortex structures, being comparable to the normal group. Consequently, the intranasal DHQ-CS NPs loaded in-situ gel seems to be a promising therapeutic formulation for Alzheimer’s disease medication.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"666 ","pages":"Article 124814"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dihydroquercetin nanoparticles nasal gel is a promising formulation for amelioration of Alzheimer’s disease\",\"authors\":\"Basant A. Abou-Taleb , Wessam F. El-Hadidy , Inas M. Masoud , Noura A. Matar , Hoda S. Hussein\",\"doi\":\"10.1016/j.ijpharm.2024.124814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dihydroquercetin is a natural flavonoid with anti-inflammatory, antioxidant, and neuroprotective activities. Dihydroquercetin exhibits a great neuroprotector promise in Alzheimer’s disorder via preventing the aggregation of amyloid-beta-peptide-Aβ(1–42). The goal of the study was to create dihydroquercetin-loaded-chitosan nanoparticles (DHQ-CS NPs) loaded to a mucoadhesive, thermosensitive in-situ gel for direct nasal administration to cure Alzheimer’s disorder. Loading drug in chitosan nanoparticles and incorporation into thermosensitive gel enhanced residence time and reduced mucociliary-clearance. Different in-vitro-physicochemical-characteristics of gels and nanoparticles-characterization were used to evaluate the formulations. The therapeutic effectiveness of DHQ-CS NPs gel was evaluated behaviorally, biochemically and histopathologically in Alzheimer’s-rat-model compared to intranasal DHQ gel. The small particles-size was obtained = 235.3 nm of DHQ-CS NPs. The DHQ-CS NPs gel demonstrated a greater release rate compared to the raw DHQ gel. Additionally, the nasal-administration of the DHQ-CS NPs gel showed better In-vivo results compared to DHQ gel, through improvement of memory and learning deficits and also the exploratory behavior and new object memory in streptozotocin induced-Alzheimer rats. Biochemically, the intranasal DHQ-CS NPs gel, showed reduced both Aβ-protein formation and tau protein hyperphosphorylation, inhibition of acetylcholine esterase activity and oxidative stress in the brain with increase of total antioxidants in the brain and serum, compared to DHQ gel. Histopathologically, the DHQ-CS NPs nasal gel produced improvement in the hippocampal and cerebral cortex structures, being comparable to the normal group. Consequently, the intranasal DHQ-CS NPs loaded in-situ gel seems to be a promising therapeutic formulation for Alzheimer’s disease medication.</div></div>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":\"666 \",\"pages\":\"Article 124814\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378517324010482\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324010482","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Dihydroquercetin nanoparticles nasal gel is a promising formulation for amelioration of Alzheimer’s disease
Dihydroquercetin is a natural flavonoid with anti-inflammatory, antioxidant, and neuroprotective activities. Dihydroquercetin exhibits a great neuroprotector promise in Alzheimer’s disorder via preventing the aggregation of amyloid-beta-peptide-Aβ(1–42). The goal of the study was to create dihydroquercetin-loaded-chitosan nanoparticles (DHQ-CS NPs) loaded to a mucoadhesive, thermosensitive in-situ gel for direct nasal administration to cure Alzheimer’s disorder. Loading drug in chitosan nanoparticles and incorporation into thermosensitive gel enhanced residence time and reduced mucociliary-clearance. Different in-vitro-physicochemical-characteristics of gels and nanoparticles-characterization were used to evaluate the formulations. The therapeutic effectiveness of DHQ-CS NPs gel was evaluated behaviorally, biochemically and histopathologically in Alzheimer’s-rat-model compared to intranasal DHQ gel. The small particles-size was obtained = 235.3 nm of DHQ-CS NPs. The DHQ-CS NPs gel demonstrated a greater release rate compared to the raw DHQ gel. Additionally, the nasal-administration of the DHQ-CS NPs gel showed better In-vivo results compared to DHQ gel, through improvement of memory and learning deficits and also the exploratory behavior and new object memory in streptozotocin induced-Alzheimer rats. Biochemically, the intranasal DHQ-CS NPs gel, showed reduced both Aβ-protein formation and tau protein hyperphosphorylation, inhibition of acetylcholine esterase activity and oxidative stress in the brain with increase of total antioxidants in the brain and serum, compared to DHQ gel. Histopathologically, the DHQ-CS NPs nasal gel produced improvement in the hippocampal and cerebral cortex structures, being comparable to the normal group. Consequently, the intranasal DHQ-CS NPs loaded in-situ gel seems to be a promising therapeutic formulation for Alzheimer’s disease medication.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.