{"title":"单细胞转录组分析小鼠肺部在服用脂多糖后的损伤期和恢复期的情况。","authors":"Hou-Ping Wang, Jian He, Jian-Rong He, Dan-Dan Li, He Huang, Bing Chen","doi":"10.1007/s00011-024-01951-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study sought to investigate the cellular and molecular alterations during the injury and recovery periods of ALI and develop effective treatments for ALI.</p><p><strong>Methods: </strong>Pulmonary histology at 1, 3, 6, and 9 days after lipopolysaccharide administration mice were assessed. An unbiased single-cell RNA sequencing was performed in alveoli tissues from injury (day 3) and recovery (day 6) mice after lipopolysaccharide administration. The roles of Fpr2 and Dpp4 in ALI were assessed.</p><p><strong>Results: </strong>The most severe lung injury occurred on day 3, followed by recovery entirely on day 9 after lipopolysaccharide administration. The numbers of Il1a<sup>+</sup> neutrophils, monocytes/macrophages, and Cd4<sup>+</sup> and Cd8<sup>+</sup> T cells significantly increased at day 3 after LPS administration; subsequently, the number of Il1a<sup>+</sup> neutrophils greatly decreased, the numbers of monocytes/macrophages and Cd4<sup>+</sup> and Cd8<sup>+</sup> T cells continuously increased, and the number of resident alveolar macrophages significantly increased at day 6. The interactions between monocytes/macrophages and pneumocytes during the injury period were enhanced by the Cxcl10/Dpp4 pair, and inhibiting Dpp4 improved ALI significantly, while inhibiting Fpr2 did not.</p><p><strong>Conclusions: </strong>Our results offer valuable insights into the cellular and molecular mechanisms underlying its progression and identify Dpp4 as an effective therapeutic target for ALI.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"2087-2107"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell transcriptome analysis of the mouse lungs during the injury and recovery periods after lipopolysaccharide administration.\",\"authors\":\"Hou-Ping Wang, Jian He, Jian-Rong He, Dan-Dan Li, He Huang, Bing Chen\",\"doi\":\"10.1007/s00011-024-01951-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study sought to investigate the cellular and molecular alterations during the injury and recovery periods of ALI and develop effective treatments for ALI.</p><p><strong>Methods: </strong>Pulmonary histology at 1, 3, 6, and 9 days after lipopolysaccharide administration mice were assessed. An unbiased single-cell RNA sequencing was performed in alveoli tissues from injury (day 3) and recovery (day 6) mice after lipopolysaccharide administration. The roles of Fpr2 and Dpp4 in ALI were assessed.</p><p><strong>Results: </strong>The most severe lung injury occurred on day 3, followed by recovery entirely on day 9 after lipopolysaccharide administration. The numbers of Il1a<sup>+</sup> neutrophils, monocytes/macrophages, and Cd4<sup>+</sup> and Cd8<sup>+</sup> T cells significantly increased at day 3 after LPS administration; subsequently, the number of Il1a<sup>+</sup> neutrophils greatly decreased, the numbers of monocytes/macrophages and Cd4<sup>+</sup> and Cd8<sup>+</sup> T cells continuously increased, and the number of resident alveolar macrophages significantly increased at day 6. The interactions between monocytes/macrophages and pneumocytes during the injury period were enhanced by the Cxcl10/Dpp4 pair, and inhibiting Dpp4 improved ALI significantly, while inhibiting Fpr2 did not.</p><p><strong>Conclusions: </strong>Our results offer valuable insights into the cellular and molecular mechanisms underlying its progression and identify Dpp4 as an effective therapeutic target for ALI.</p>\",\"PeriodicalId\":13550,\"journal\":{\"name\":\"Inflammation Research\",\"volume\":\" \",\"pages\":\"2087-2107\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00011-024-01951-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00011-024-01951-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
研究目的本研究旨在调查 ALI 损伤和恢复期的细胞和分子变化,并开发 ALI 的有效治疗方法:方法:评估给小鼠注射脂多糖后 1、3、6 和 9 天的肺组织学。方法:对给小鼠注射脂多糖后 1、3、6 和 9 天的肺组织学进行评估;对给小鼠注射脂多糖后损伤期(第 3 天)和恢复期(第 6 天)的肺泡组织进行无偏见的单细胞 RNA 测序。评估了Fpr2和Dpp4在ALI中的作用:结果:最严重的肺损伤发生在给予脂多糖后的第3天,随后在第9天完全恢复。给予 LPS 后第 3 天,Il1a+ 中性粒细胞、单核细胞/巨噬细胞、Cd4+ 和 Cd8+ T 细胞的数量显著增加;随后,Il1a+ 中性粒细胞的数量大幅减少,单核细胞/巨噬细胞、Cd4+ 和 Cd8+ T 细胞的数量持续增加,肺泡巨噬细胞的数量在第 6 天显著增加。Cxcl10/Dpp4对损伤期间单核细胞/巨噬细胞和肺细胞之间的相互作用有增强作用,抑制Dpp4可明显改善ALI,而抑制Fpr2则不会:我们的研究结果为了解ALI进展的细胞和分子机制提供了有价值的见解,并确定了Dpp4作为ALI的有效治疗靶点。
Single-cell transcriptome analysis of the mouse lungs during the injury and recovery periods after lipopolysaccharide administration.
Objective: This study sought to investigate the cellular and molecular alterations during the injury and recovery periods of ALI and develop effective treatments for ALI.
Methods: Pulmonary histology at 1, 3, 6, and 9 days after lipopolysaccharide administration mice were assessed. An unbiased single-cell RNA sequencing was performed in alveoli tissues from injury (day 3) and recovery (day 6) mice after lipopolysaccharide administration. The roles of Fpr2 and Dpp4 in ALI were assessed.
Results: The most severe lung injury occurred on day 3, followed by recovery entirely on day 9 after lipopolysaccharide administration. The numbers of Il1a+ neutrophils, monocytes/macrophages, and Cd4+ and Cd8+ T cells significantly increased at day 3 after LPS administration; subsequently, the number of Il1a+ neutrophils greatly decreased, the numbers of monocytes/macrophages and Cd4+ and Cd8+ T cells continuously increased, and the number of resident alveolar macrophages significantly increased at day 6. The interactions between monocytes/macrophages and pneumocytes during the injury period were enhanced by the Cxcl10/Dpp4 pair, and inhibiting Dpp4 improved ALI significantly, while inhibiting Fpr2 did not.
Conclusions: Our results offer valuable insights into the cellular and molecular mechanisms underlying its progression and identify Dpp4 as an effective therapeutic target for ALI.
期刊介绍:
Inflammation Research (IR) publishes peer-reviewed papers on all aspects of inflammation and related fields including histopathology, immunological mechanisms, gene expression, mediators, experimental models, clinical investigations and the effect of drugs. Related fields are broadly defined and include for instance, allergy and asthma, shock, pain, joint damage, skin disease as well as clinical trials of relevant drugs.