利用机器学习从心肺信号估算感知用力等级的特征重要性。

IF 2.3 Q2 SPORT SCIENCES
Frontiers in Sports and Active Living Pub Date : 2024-09-24 eCollection Date: 2024-01-01 DOI:10.3389/fspor.2024.1448243
Runbei Cheng, Phoebe Haste, Elyse Levens, Jeroen Bergmann
{"title":"利用机器学习从心肺信号估算感知用力等级的特征重要性。","authors":"Runbei Cheng, Phoebe Haste, Elyse Levens, Jeroen Bergmann","doi":"10.3389/fspor.2024.1448243","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The purpose of this study is to investigate the importance of respiratory features, relative to heart rate (HR), when estimating rating of perceived exertion (RPE) using machine learning models.</p><p><strong>Methods: </strong>A total of 20 participants aged 18 to 43 were recruited to carry out Yo-Yo level-1 intermittent recovery tests, while wearing a COSMED K5 portable metabolic machine. RPE information was collected throughout the Yo-Yo test for each participant. Three regression models (linear, random forest, and a multi-layer perceptron) were tested with 8 training features (HR, minute ventilation (VE), respiratory frequency (Rf), volume of oxygen consumed (VO2), age, gender, weight, and height).</p><p><strong>Results: </strong>Using a leave-one-subject-out cross validation, the random forest model was found to be the most accurate, with a root mean square error of 1.849, and a mean absolute error of 1.461 ± 1.133. Feature importance was estimated via permutation feature importance, and VE was found to be the most important for all three models followed by HR.</p><p><strong>Discussion: </strong>Future works that aim to estimate RPE using wearable sensors should therefore consider using a combination of cardiovascular and respiratory data.</p>","PeriodicalId":12716,"journal":{"name":"Frontiers in Sports and Active Living","volume":"6 ","pages":"1448243"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458442/pdf/","citationCount":"0","resultStr":"{\"title\":\"Feature importance for estimating rating of perceived exertion from cardiorespiratory signals using machine learning.\",\"authors\":\"Runbei Cheng, Phoebe Haste, Elyse Levens, Jeroen Bergmann\",\"doi\":\"10.3389/fspor.2024.1448243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The purpose of this study is to investigate the importance of respiratory features, relative to heart rate (HR), when estimating rating of perceived exertion (RPE) using machine learning models.</p><p><strong>Methods: </strong>A total of 20 participants aged 18 to 43 were recruited to carry out Yo-Yo level-1 intermittent recovery tests, while wearing a COSMED K5 portable metabolic machine. RPE information was collected throughout the Yo-Yo test for each participant. Three regression models (linear, random forest, and a multi-layer perceptron) were tested with 8 training features (HR, minute ventilation (VE), respiratory frequency (Rf), volume of oxygen consumed (VO2), age, gender, weight, and height).</p><p><strong>Results: </strong>Using a leave-one-subject-out cross validation, the random forest model was found to be the most accurate, with a root mean square error of 1.849, and a mean absolute error of 1.461 ± 1.133. Feature importance was estimated via permutation feature importance, and VE was found to be the most important for all three models followed by HR.</p><p><strong>Discussion: </strong>Future works that aim to estimate RPE using wearable sensors should therefore consider using a combination of cardiovascular and respiratory data.</p>\",\"PeriodicalId\":12716,\"journal\":{\"name\":\"Frontiers in Sports and Active Living\",\"volume\":\"6 \",\"pages\":\"1448243\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458442/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Sports and Active Living\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fspor.2024.1448243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Sports and Active Living","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspor.2024.1448243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

简介:本研究的目的是探讨在使用机器学习模型估算感知用力等级(RPE)时,呼吸特征相对于心率的重要性:本研究的目的是利用机器学习模型估算感知用力等级(RPE)时,研究呼吸特征相对于心率(HR)的重要性:方法:共招募了 20 名年龄在 18 至 43 岁之间的参与者,让他们佩戴 COSMED K5 便携式新陈代谢机进行 Yo-Yo 1 级间歇恢复测试。在整个悠悠球测试过程中,收集每位参与者的 RPE 信息。利用 8 个训练特征(心率、分钟通气量(VE)、呼吸频率(Rf)、耗氧量(VO2)、年龄、性别、体重和身高)测试了三个回归模型(线性模型、随机森林模型和多层感知器模型):结果:采用 "留一弃一 "交叉验证,发现随机森林模型最准确,均方根误差为 1.849,平均绝对误差为 1.461 ± 1.133。通过置换特征重要性估算特征重要性,发现在所有三个模型中,VE 的重要性最高,其次是 HR:因此,未来使用可穿戴传感器估算 RPE 的工作应考虑结合使用心血管和呼吸数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature importance for estimating rating of perceived exertion from cardiorespiratory signals using machine learning.

Introduction: The purpose of this study is to investigate the importance of respiratory features, relative to heart rate (HR), when estimating rating of perceived exertion (RPE) using machine learning models.

Methods: A total of 20 participants aged 18 to 43 were recruited to carry out Yo-Yo level-1 intermittent recovery tests, while wearing a COSMED K5 portable metabolic machine. RPE information was collected throughout the Yo-Yo test for each participant. Three regression models (linear, random forest, and a multi-layer perceptron) were tested with 8 training features (HR, minute ventilation (VE), respiratory frequency (Rf), volume of oxygen consumed (VO2), age, gender, weight, and height).

Results: Using a leave-one-subject-out cross validation, the random forest model was found to be the most accurate, with a root mean square error of 1.849, and a mean absolute error of 1.461 ± 1.133. Feature importance was estimated via permutation feature importance, and VE was found to be the most important for all three models followed by HR.

Discussion: Future works that aim to estimate RPE using wearable sensors should therefore consider using a combination of cardiovascular and respiratory data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
7.40%
发文量
459
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信