探索特定葡萄酒酵母对不同外源氧化还原辅助因子前体的发酵代谢反应。

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Viwe Tyibilika, Mathabatha E Setati, Audrey Bloem, Benoit Divol, Carole Camarasa
{"title":"探索特定葡萄酒酵母对不同外源氧化还原辅助因子前体的发酵代谢反应。","authors":"Viwe Tyibilika, Mathabatha E Setati, Audrey Bloem, Benoit Divol, Carole Camarasa","doi":"10.1093/femsyr/foae029","DOIUrl":null,"url":null,"abstract":"<p><p>The use of non-Saccharomyces yeasts in winemaking is gaining traction due to their specific phenotypes of technological interest, including their unique profile of central carbon metabolites and volatile compounds. However, the lack of knowledge about their physiology hinders their industrial exploitation. The intracellular redox status, involving NAD/NADH and NADP/NADPH cofactors, is a key driver of yeast activity during fermentation, notably directing the formation of metabolites that contribute to the wine bouquet. The biosynthesis of these cofactors can be modulated by the availability of their precursors, nicotinic acid and tryptophan, and their ratio by that of thiamine. In this study, a multifactorial experiment was designed to assess the effects of these three nutrients and their interactions on the metabolic response of various wine yeast species. The data indicated that limiting concentrations of nicotinic acid led to a species-dependent decrease in intracellular NAD(H) concentrations, resulting in variations of fermentation performance and production of metabolic sinks. Thiamine limitation did not directly affect redox cofactor concentrations or balance, but influenced redox management and subsequently the production of metabolites. Overall, this study identified nicotinic acid and thiamine as key factors to consider for species-specific modulation of the metabolic footprint of wine yeasts.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503943/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring fermentative metabolic response to varying exogenous supplies of redox cofactor precursors in selected wine yeast species.\",\"authors\":\"Viwe Tyibilika, Mathabatha E Setati, Audrey Bloem, Benoit Divol, Carole Camarasa\",\"doi\":\"10.1093/femsyr/foae029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of non-Saccharomyces yeasts in winemaking is gaining traction due to their specific phenotypes of technological interest, including their unique profile of central carbon metabolites and volatile compounds. However, the lack of knowledge about their physiology hinders their industrial exploitation. The intracellular redox status, involving NAD/NADH and NADP/NADPH cofactors, is a key driver of yeast activity during fermentation, notably directing the formation of metabolites that contribute to the wine bouquet. The biosynthesis of these cofactors can be modulated by the availability of their precursors, nicotinic acid and tryptophan, and their ratio by that of thiamine. In this study, a multifactorial experiment was designed to assess the effects of these three nutrients and their interactions on the metabolic response of various wine yeast species. The data indicated that limiting concentrations of nicotinic acid led to a species-dependent decrease in intracellular NAD(H) concentrations, resulting in variations of fermentation performance and production of metabolic sinks. Thiamine limitation did not directly affect redox cofactor concentrations or balance, but influenced redox management and subsequently the production of metabolites. Overall, this study identified nicotinic acid and thiamine as key factors to consider for species-specific modulation of the metabolic footprint of wine yeasts.</p>\",\"PeriodicalId\":12290,\"journal\":{\"name\":\"FEMS yeast research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503943/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS yeast research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foae029\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foae029","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于非酵母菌的特殊表型(包括其独特的中心碳代谢产物和挥发性化合物)具有技术价值,因此在葡萄酒酿造中使用非酵母菌的做法正日益受到重视。然而,对其生理学知识的缺乏阻碍了对它们的工业化利用。细胞内氧化还原状态涉及 NAD/NADH 和 NADP/NADPH 辅因子,是发酵过程中酵母活动的主要驱动力,尤其是指导形成有助于葡萄酒香气的代谢物。这些辅助因子的生物合成可受其前体烟酸和色氨酸供应量的调节,其比例则受硫胺素供应量的调节。本研究设计了一个多因素实验,以评估这三种营养物质及其相互作用对各种葡萄酒酵母代谢反应的影响。数据表明,烟酸浓度的限制会导致细胞内 NAD(H) 浓度的降低,从而导致发酵性能和代谢沉的产生发生变化。硫胺素的限制不会直接影响氧化还原辅因子的浓度或平衡,但会影响氧化还原管理,进而影响代谢产物的产生。总之,本研究发现烟酸和硫胺素是调节葡萄酒酵母代谢足迹的物种特异性关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring fermentative metabolic response to varying exogenous supplies of redox cofactor precursors in selected wine yeast species.

The use of non-Saccharomyces yeasts in winemaking is gaining traction due to their specific phenotypes of technological interest, including their unique profile of central carbon metabolites and volatile compounds. However, the lack of knowledge about their physiology hinders their industrial exploitation. The intracellular redox status, involving NAD/NADH and NADP/NADPH cofactors, is a key driver of yeast activity during fermentation, notably directing the formation of metabolites that contribute to the wine bouquet. The biosynthesis of these cofactors can be modulated by the availability of their precursors, nicotinic acid and tryptophan, and their ratio by that of thiamine. In this study, a multifactorial experiment was designed to assess the effects of these three nutrients and their interactions on the metabolic response of various wine yeast species. The data indicated that limiting concentrations of nicotinic acid led to a species-dependent decrease in intracellular NAD(H) concentrations, resulting in variations of fermentation performance and production of metabolic sinks. Thiamine limitation did not directly affect redox cofactor concentrations or balance, but influenced redox management and subsequently the production of metabolites. Overall, this study identified nicotinic acid and thiamine as key factors to consider for species-specific modulation of the metabolic footprint of wine yeasts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信