Claudia M Waddingham, Patrick Hinton, Paul J Villeneuve, Jeffrey R Brook, Eric Lavigne, Kristian Larsen, Will D King, Deyong Wen, Jun Meng, Junhua Zhang, Elisabeth Galarneau, Shelley A Harris
{"title":"加拿大安大略省一项病例对照研究中的环境多环芳烃暴露与早发女性乳腺癌。","authors":"Claudia M Waddingham, Patrick Hinton, Paul J Villeneuve, Jeffrey R Brook, Eric Lavigne, Kristian Larsen, Will D King, Deyong Wen, Jun Meng, Junhua Zhang, Elisabeth Galarneau, Shelley A Harris","doi":"10.1097/EE9.0000000000000333","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ambient polycyclic aromatic hydrocarbons (PAHs) are a class of toxicologically important and understudied air pollutants. Epidemiologic evidence suggests that chronic exposure to PAHs increases breast cancer risk; however, there are few studies in nonoccupational settings that focus on early-onset diagnoses.</p><p><strong>Methods: </strong>The relationship between residentially-based ambient PAH concentrations and female breast cancer, among those 18-45 years of age, was characterized in the Ontario Environment and Health Study (OEHS). The OEHS was a population-based case-control study undertaken in Ontario, Canada between 2013 and 2015. Primary incident breast cancers were identified within 3 months of diagnosis, and a population-based series of controls were recruited. Concentrations of ambient PAHs, using fluoranthene as a surrogate, were derived using a chemical transport model at a 2.5 km spatial resolution. These estimates were assigned to participants' residences at the time of the interview and 5 years prior. Logistic regression was used to estimate odds ratios (ORs) and their 95% confidence intervals (CIs) based on a quartile categorization of fluoranthene exposure while adjusting for a series of individual- and area-level risk factors. The shape of the exposure-response trend was evaluated using cubic splines.</p><p><strong>Results: </strong>Median fluoranthene exposure for cases and controls was 0.0017 µg/m<sup>3</sup> and 0.0014 µg/m<sup>3</sup>, respectively. In models adjusted for a parsimonious set of risk factors, the highest quartile of exposure was associated with an increased risk of breast cancer (OR = 2.16; 95% CI = 1.22, 3.84). Restricted spline analyses revealed nonlinear dose-response patterns.</p><p><strong>Conclusions: </strong>These findings support the hypothesis that ambient PAH exposures increases the risk of early-onset breast cancer.</p>","PeriodicalId":11713,"journal":{"name":"Environmental Epidemiology","volume":"8 5","pages":"e333"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463212/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exposure to ambient polycyclic aromatic hydrocarbons and early-onset female breast cancer in a case-control study in Ontario, Canada.\",\"authors\":\"Claudia M Waddingham, Patrick Hinton, Paul J Villeneuve, Jeffrey R Brook, Eric Lavigne, Kristian Larsen, Will D King, Deyong Wen, Jun Meng, Junhua Zhang, Elisabeth Galarneau, Shelley A Harris\",\"doi\":\"10.1097/EE9.0000000000000333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ambient polycyclic aromatic hydrocarbons (PAHs) are a class of toxicologically important and understudied air pollutants. Epidemiologic evidence suggests that chronic exposure to PAHs increases breast cancer risk; however, there are few studies in nonoccupational settings that focus on early-onset diagnoses.</p><p><strong>Methods: </strong>The relationship between residentially-based ambient PAH concentrations and female breast cancer, among those 18-45 years of age, was characterized in the Ontario Environment and Health Study (OEHS). The OEHS was a population-based case-control study undertaken in Ontario, Canada between 2013 and 2015. Primary incident breast cancers were identified within 3 months of diagnosis, and a population-based series of controls were recruited. Concentrations of ambient PAHs, using fluoranthene as a surrogate, were derived using a chemical transport model at a 2.5 km spatial resolution. These estimates were assigned to participants' residences at the time of the interview and 5 years prior. Logistic regression was used to estimate odds ratios (ORs) and their 95% confidence intervals (CIs) based on a quartile categorization of fluoranthene exposure while adjusting for a series of individual- and area-level risk factors. The shape of the exposure-response trend was evaluated using cubic splines.</p><p><strong>Results: </strong>Median fluoranthene exposure for cases and controls was 0.0017 µg/m<sup>3</sup> and 0.0014 µg/m<sup>3</sup>, respectively. In models adjusted for a parsimonious set of risk factors, the highest quartile of exposure was associated with an increased risk of breast cancer (OR = 2.16; 95% CI = 1.22, 3.84). Restricted spline analyses revealed nonlinear dose-response patterns.</p><p><strong>Conclusions: </strong>These findings support the hypothesis that ambient PAH exposures increases the risk of early-onset breast cancer.</p>\",\"PeriodicalId\":11713,\"journal\":{\"name\":\"Environmental Epidemiology\",\"volume\":\"8 5\",\"pages\":\"e333\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463212/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/EE9.0000000000000333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/EE9.0000000000000333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Exposure to ambient polycyclic aromatic hydrocarbons and early-onset female breast cancer in a case-control study in Ontario, Canada.
Background: Ambient polycyclic aromatic hydrocarbons (PAHs) are a class of toxicologically important and understudied air pollutants. Epidemiologic evidence suggests that chronic exposure to PAHs increases breast cancer risk; however, there are few studies in nonoccupational settings that focus on early-onset diagnoses.
Methods: The relationship between residentially-based ambient PAH concentrations and female breast cancer, among those 18-45 years of age, was characterized in the Ontario Environment and Health Study (OEHS). The OEHS was a population-based case-control study undertaken in Ontario, Canada between 2013 and 2015. Primary incident breast cancers were identified within 3 months of diagnosis, and a population-based series of controls were recruited. Concentrations of ambient PAHs, using fluoranthene as a surrogate, were derived using a chemical transport model at a 2.5 km spatial resolution. These estimates were assigned to participants' residences at the time of the interview and 5 years prior. Logistic regression was used to estimate odds ratios (ORs) and their 95% confidence intervals (CIs) based on a quartile categorization of fluoranthene exposure while adjusting for a series of individual- and area-level risk factors. The shape of the exposure-response trend was evaluated using cubic splines.
Results: Median fluoranthene exposure for cases and controls was 0.0017 µg/m3 and 0.0014 µg/m3, respectively. In models adjusted for a parsimonious set of risk factors, the highest quartile of exposure was associated with an increased risk of breast cancer (OR = 2.16; 95% CI = 1.22, 3.84). Restricted spline analyses revealed nonlinear dose-response patterns.
Conclusions: These findings support the hypothesis that ambient PAH exposures increases the risk of early-onset breast cancer.