一维经济模型中的虾形结构和周期气泡通向混沌的途径。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ruma Kumbhakar, Sarbari Karmakar, Nikhil Pal, Jürgen Kurths
{"title":"一维经济模型中的虾形结构和周期气泡通向混沌的途径。","authors":"Ruma Kumbhakar, Sarbari Karmakar, Nikhil Pal, Jürgen Kurths","doi":"10.1063/5.0226934","DOIUrl":null,"url":null,"abstract":"<p><p>A beautiful feature of nature is its complexity. The chaos theory has proved useful in a variety of fields, including physics, chemistry, biology, and economics. In the present article, we explore the complex dynamics of a rather simple one-dimensional economic model in a parameter plane. We find several organized zones of \"chaos and non-chaos\" and different routes to chaos in this model. The study reveals that even this one-dimensional model can generate intriguing shrimp-shaped structures immersed within the chaotic regime of the parameter plane. We also observe shrimp-induced period-bubbling phenomenon, three times self-similarity of shrimp-shaped structures, and a variety of bistable behaviors. The emergence of shrimp-shaped structures in chaotic regimes can enable us to achieve favorable economic scenarios (periodic) from unfavorable ones (chaotic) by adjusting either one or both of the control parameters over broad regions of these structures. Moreover, our results suggest that depending on the parameters and initial conditions, a company may go bankrupt, or its capital may rise or fall in a regular or irregular manner.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shrimp-shaped structure and period-bubbling route to chaos in a one-dimensional economic model.\",\"authors\":\"Ruma Kumbhakar, Sarbari Karmakar, Nikhil Pal, Jürgen Kurths\",\"doi\":\"10.1063/5.0226934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A beautiful feature of nature is its complexity. The chaos theory has proved useful in a variety of fields, including physics, chemistry, biology, and economics. In the present article, we explore the complex dynamics of a rather simple one-dimensional economic model in a parameter plane. We find several organized zones of \\\"chaos and non-chaos\\\" and different routes to chaos in this model. The study reveals that even this one-dimensional model can generate intriguing shrimp-shaped structures immersed within the chaotic regime of the parameter plane. We also observe shrimp-induced period-bubbling phenomenon, three times self-similarity of shrimp-shaped structures, and a variety of bistable behaviors. The emergence of shrimp-shaped structures in chaotic regimes can enable us to achieve favorable economic scenarios (periodic) from unfavorable ones (chaotic) by adjusting either one or both of the control parameters over broad regions of these structures. Moreover, our results suggest that depending on the parameters and initial conditions, a company may go bankrupt, or its capital may rise or fall in a regular or irregular manner.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0226934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0226934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

大自然的美丽之处在于其复杂性。事实证明,混沌理论在物理学、化学、生物学和经济学等多个领域都很有用。在本文中,我们探讨了一个相当简单的一维经济模型在参数平面上的复杂动态。我们发现在这个模型中存在几个有组织的 "混沌和非混沌 "区域,以及通向混沌的不同路径。研究表明,即使是这种一维模型,也能在参数平面的混沌体系中产生有趣的虾形结构。我们还观察到虾状结构引起的周期气泡现象、虾状结构的三次自相似性以及多种双稳态行为。在混沌状态下出现的虾形结构,可以让我们通过在这些结构的广泛区域内调整一个或两个控制参数,从不利的(混沌的)经济情景中获得有利的(周期的)经济情景。此外,我们的研究结果表明,根据参数和初始条件的不同,公司可能会破产,其资本也可能以有规律或无规律的方式上升或下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shrimp-shaped structure and period-bubbling route to chaos in a one-dimensional economic model.

A beautiful feature of nature is its complexity. The chaos theory has proved useful in a variety of fields, including physics, chemistry, biology, and economics. In the present article, we explore the complex dynamics of a rather simple one-dimensional economic model in a parameter plane. We find several organized zones of "chaos and non-chaos" and different routes to chaos in this model. The study reveals that even this one-dimensional model can generate intriguing shrimp-shaped structures immersed within the chaotic regime of the parameter plane. We also observe shrimp-induced period-bubbling phenomenon, three times self-similarity of shrimp-shaped structures, and a variety of bistable behaviors. The emergence of shrimp-shaped structures in chaotic regimes can enable us to achieve favorable economic scenarios (periodic) from unfavorable ones (chaotic) by adjusting either one or both of the control parameters over broad regions of these structures. Moreover, our results suggest that depending on the parameters and initial conditions, a company may go bankrupt, or its capital may rise or fall in a regular or irregular manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信