{"title":"扩散对非相同元人群网络中流行病同步模式的影响。","authors":"Anika Roy, Ujjwal Shekhar, Aditi Bose, Subrata Ghosh, Santosh Nannuru, Syamal Kumar Dana, Chittaranjan Hens","doi":"10.1063/5.0222358","DOIUrl":null,"url":null,"abstract":"<p><p>In epidemic networks, it has been demonstrated that implementing any intervention strategy on nodes with specific characteristics (such as a high degree or node betweenness) substantially diminishes the outbreak size. We extend this finding with a disease-spreading meta-population model using testkits to explore the influence of migration on infection dynamics within the distinct communities of the network. Notably, we observe that nodes equipped with testkits and no testkits tend to segregate into two separate clusters when migration is low, but above a critical migration rate, they coalesce into one single cluster. Based on this clustering phenomenon, we develop a reduced model and validate the emergent clustering behavior through comprehensive simulations. We observe this property in both homogeneous and heterogeneous networks.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of diffusion on synchronization pattern of epidemics in non-identical meta-population networks.\",\"authors\":\"Anika Roy, Ujjwal Shekhar, Aditi Bose, Subrata Ghosh, Santosh Nannuru, Syamal Kumar Dana, Chittaranjan Hens\",\"doi\":\"10.1063/5.0222358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In epidemic networks, it has been demonstrated that implementing any intervention strategy on nodes with specific characteristics (such as a high degree or node betweenness) substantially diminishes the outbreak size. We extend this finding with a disease-spreading meta-population model using testkits to explore the influence of migration on infection dynamics within the distinct communities of the network. Notably, we observe that nodes equipped with testkits and no testkits tend to segregate into two separate clusters when migration is low, but above a critical migration rate, they coalesce into one single cluster. Based on this clustering phenomenon, we develop a reduced model and validate the emergent clustering behavior through comprehensive simulations. We observe this property in both homogeneous and heterogeneous networks.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0222358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0222358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Impact of diffusion on synchronization pattern of epidemics in non-identical meta-population networks.
In epidemic networks, it has been demonstrated that implementing any intervention strategy on nodes with specific characteristics (such as a high degree or node betweenness) substantially diminishes the outbreak size. We extend this finding with a disease-spreading meta-population model using testkits to explore the influence of migration on infection dynamics within the distinct communities of the network. Notably, we observe that nodes equipped with testkits and no testkits tend to segregate into two separate clusters when migration is low, but above a critical migration rate, they coalesce into one single cluster. Based on this clustering phenomenon, we develop a reduced model and validate the emergent clustering behavior through comprehensive simulations. We observe this property in both homogeneous and heterogeneous networks.