扩散对非相同元人群网络中流行病同步模式的影响。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Anika Roy, Ujjwal Shekhar, Aditi Bose, Subrata Ghosh, Santosh Nannuru, Syamal Kumar Dana, Chittaranjan Hens
{"title":"扩散对非相同元人群网络中流行病同步模式的影响。","authors":"Anika Roy, Ujjwal Shekhar, Aditi Bose, Subrata Ghosh, Santosh Nannuru, Syamal Kumar Dana, Chittaranjan Hens","doi":"10.1063/5.0222358","DOIUrl":null,"url":null,"abstract":"<p><p>In epidemic networks, it has been demonstrated that implementing any intervention strategy on nodes with specific characteristics (such as a high degree or node betweenness) substantially diminishes the outbreak size. We extend this finding with a disease-spreading meta-population model using testkits to explore the influence of migration on infection dynamics within the distinct communities of the network. Notably, we observe that nodes equipped with testkits and no testkits tend to segregate into two separate clusters when migration is low, but above a critical migration rate, they coalesce into one single cluster. Based on this clustering phenomenon, we develop a reduced model and validate the emergent clustering behavior through comprehensive simulations. We observe this property in both homogeneous and heterogeneous networks.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of diffusion on synchronization pattern of epidemics in non-identical meta-population networks.\",\"authors\":\"Anika Roy, Ujjwal Shekhar, Aditi Bose, Subrata Ghosh, Santosh Nannuru, Syamal Kumar Dana, Chittaranjan Hens\",\"doi\":\"10.1063/5.0222358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In epidemic networks, it has been demonstrated that implementing any intervention strategy on nodes with specific characteristics (such as a high degree or node betweenness) substantially diminishes the outbreak size. We extend this finding with a disease-spreading meta-population model using testkits to explore the influence of migration on infection dynamics within the distinct communities of the network. Notably, we observe that nodes equipped with testkits and no testkits tend to segregate into two separate clusters when migration is low, but above a critical migration rate, they coalesce into one single cluster. Based on this clustering phenomenon, we develop a reduced model and validate the emergent clustering behavior through comprehensive simulations. We observe this property in both homogeneous and heterogeneous networks.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0222358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0222358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

事实证明,在流行病网络中,对具有特定特征(如高程度或节点间度)的节点实施任何干预策略,都会大大缩小疫情爆发的规模。我们将这一发现推广到使用测试包的疾病传播元人群模型中,以探索迁移对网络中不同群落内感染动态的影响。值得注意的是,我们观察到,当迁移率较低时,装有测试盒和没有测试盒的节点往往会分离成两个独立的群集,但当迁移率超过临界值时,它们就会聚合成一个群集。根据这一聚类现象,我们建立了一个简化模型,并通过综合模拟验证了出现的聚类行为。我们在同构和异构网络中都观察到了这一特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of diffusion on synchronization pattern of epidemics in non-identical meta-population networks.

In epidemic networks, it has been demonstrated that implementing any intervention strategy on nodes with specific characteristics (such as a high degree or node betweenness) substantially diminishes the outbreak size. We extend this finding with a disease-spreading meta-population model using testkits to explore the influence of migration on infection dynamics within the distinct communities of the network. Notably, we observe that nodes equipped with testkits and no testkits tend to segregate into two separate clusters when migration is low, but above a critical migration rate, they coalesce into one single cluster. Based on this clustering phenomenon, we develop a reduced model and validate the emergent clustering behavior through comprehensive simulations. We observe this property in both homogeneous and heterogeneous networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信