Sugumar Baskar, Pradhapsingh Bharathiraja, N. Rajendra Prasad
{"title":"通过扰乱细胞氧化还原状态利用依布硒使多药耐药癌细胞对多柔比星敏感","authors":"Sugumar Baskar, Pradhapsingh Bharathiraja, N. Rajendra Prasad","doi":"10.1002/cbf.4134","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Multidrug resistance (MDR) poses a significant problem in cancer treatment, often causing adverse effects during chemotherapy. Ebselen (Ebs), a synthetic organoselenium compound, affects cellular redox status in cancer cells. In the study, we observed that Ebs disrupted cellular redox balance and sensitized drug-resistant cells to doxorubicin (DOX) treatment. The combination of Ebs and DOX led to increased intracellular reactive oxygen species (ROS) levels and lipid peroxidation while decreasing the activity of thioredoxin reductase (TrxR) and cellular antioxidants in drug-resistant cells. Furthermore, this combination treatment demonstrated notable chemosensitizing effects by reducing cell viability and proliferation in MDR cells compared to DOX treatment alone. Additionally, the combination of Ebs and DOX induced DNA fragmentation and exhibited G2/M phase cell cycle arrest. Immunofluorescent analysis revealed that the Ebs and DOX combination upregulated the expression of p53 and p21, which activated the mitochondrial-dependent apoptotic pathway. The combination treatment also enhanced the upregulation of proapoptotic markers such as Bax, Caspase-3, -9, and cytochrome C, while downregulating the expression of the antiapoptotic marker Bcl-2. Therefore, the current discoveries suggest that Ebs could be employed as a drug candidate for reversing MDR in cancer cells by regulating cellular redox homeostasis.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"42 7","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitization of Multidrug Resistant Cancer Cells to Doxorubicin Using Ebselen by Disturbing Cellular Redox Status\",\"authors\":\"Sugumar Baskar, Pradhapsingh Bharathiraja, N. Rajendra Prasad\",\"doi\":\"10.1002/cbf.4134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Multidrug resistance (MDR) poses a significant problem in cancer treatment, often causing adverse effects during chemotherapy. Ebselen (Ebs), a synthetic organoselenium compound, affects cellular redox status in cancer cells. In the study, we observed that Ebs disrupted cellular redox balance and sensitized drug-resistant cells to doxorubicin (DOX) treatment. The combination of Ebs and DOX led to increased intracellular reactive oxygen species (ROS) levels and lipid peroxidation while decreasing the activity of thioredoxin reductase (TrxR) and cellular antioxidants in drug-resistant cells. Furthermore, this combination treatment demonstrated notable chemosensitizing effects by reducing cell viability and proliferation in MDR cells compared to DOX treatment alone. Additionally, the combination of Ebs and DOX induced DNA fragmentation and exhibited G2/M phase cell cycle arrest. Immunofluorescent analysis revealed that the Ebs and DOX combination upregulated the expression of p53 and p21, which activated the mitochondrial-dependent apoptotic pathway. The combination treatment also enhanced the upregulation of proapoptotic markers such as Bax, Caspase-3, -9, and cytochrome C, while downregulating the expression of the antiapoptotic marker Bcl-2. Therefore, the current discoveries suggest that Ebs could be employed as a drug candidate for reversing MDR in cancer cells by regulating cellular redox homeostasis.</p></div>\",\"PeriodicalId\":9669,\"journal\":{\"name\":\"Cell Biochemistry and Function\",\"volume\":\"42 7\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Function\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbf.4134\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.4134","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Sensitization of Multidrug Resistant Cancer Cells to Doxorubicin Using Ebselen by Disturbing Cellular Redox Status
Multidrug resistance (MDR) poses a significant problem in cancer treatment, often causing adverse effects during chemotherapy. Ebselen (Ebs), a synthetic organoselenium compound, affects cellular redox status in cancer cells. In the study, we observed that Ebs disrupted cellular redox balance and sensitized drug-resistant cells to doxorubicin (DOX) treatment. The combination of Ebs and DOX led to increased intracellular reactive oxygen species (ROS) levels and lipid peroxidation while decreasing the activity of thioredoxin reductase (TrxR) and cellular antioxidants in drug-resistant cells. Furthermore, this combination treatment demonstrated notable chemosensitizing effects by reducing cell viability and proliferation in MDR cells compared to DOX treatment alone. Additionally, the combination of Ebs and DOX induced DNA fragmentation and exhibited G2/M phase cell cycle arrest. Immunofluorescent analysis revealed that the Ebs and DOX combination upregulated the expression of p53 and p21, which activated the mitochondrial-dependent apoptotic pathway. The combination treatment also enhanced the upregulation of proapoptotic markers such as Bax, Caspase-3, -9, and cytochrome C, while downregulating the expression of the antiapoptotic marker Bcl-2. Therefore, the current discoveries suggest that Ebs could be employed as a drug candidate for reversing MDR in cancer cells by regulating cellular redox homeostasis.
期刊介绍:
Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease.
The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.