通过扰乱细胞氧化还原状态利用依布硒使多药耐药癌细胞对多柔比星敏感

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sugumar Baskar, Pradhapsingh Bharathiraja, N. Rajendra Prasad
{"title":"通过扰乱细胞氧化还原状态利用依布硒使多药耐药癌细胞对多柔比星敏感","authors":"Sugumar Baskar,&nbsp;Pradhapsingh Bharathiraja,&nbsp;N. Rajendra Prasad","doi":"10.1002/cbf.4134","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Multidrug resistance (MDR) poses a significant problem in cancer treatment, often causing adverse effects during chemotherapy. Ebselen (Ebs), a synthetic organoselenium compound, affects cellular redox status in cancer cells. In the study, we observed that Ebs disrupted cellular redox balance and sensitized drug-resistant cells to doxorubicin (DOX) treatment. The combination of Ebs and DOX led to increased intracellular reactive oxygen species (ROS) levels and lipid peroxidation while decreasing the activity of thioredoxin reductase (TrxR) and cellular antioxidants in drug-resistant cells. Furthermore, this combination treatment demonstrated notable chemosensitizing effects by reducing cell viability and proliferation in MDR cells compared to DOX treatment alone. Additionally, the combination of Ebs and DOX induced DNA fragmentation and exhibited G2/M phase cell cycle arrest. Immunofluorescent analysis revealed that the Ebs and DOX combination upregulated the expression of p53 and p21, which activated the mitochondrial-dependent apoptotic pathway. The combination treatment also enhanced the upregulation of proapoptotic markers such as Bax, Caspase-3, -9, and cytochrome C, while downregulating the expression of the antiapoptotic marker Bcl-2. Therefore, the current discoveries suggest that Ebs could be employed as a drug candidate for reversing MDR in cancer cells by regulating cellular redox homeostasis.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"42 7","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitization of Multidrug Resistant Cancer Cells to Doxorubicin Using Ebselen by Disturbing Cellular Redox Status\",\"authors\":\"Sugumar Baskar,&nbsp;Pradhapsingh Bharathiraja,&nbsp;N. Rajendra Prasad\",\"doi\":\"10.1002/cbf.4134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Multidrug resistance (MDR) poses a significant problem in cancer treatment, often causing adverse effects during chemotherapy. Ebselen (Ebs), a synthetic organoselenium compound, affects cellular redox status in cancer cells. In the study, we observed that Ebs disrupted cellular redox balance and sensitized drug-resistant cells to doxorubicin (DOX) treatment. The combination of Ebs and DOX led to increased intracellular reactive oxygen species (ROS) levels and lipid peroxidation while decreasing the activity of thioredoxin reductase (TrxR) and cellular antioxidants in drug-resistant cells. Furthermore, this combination treatment demonstrated notable chemosensitizing effects by reducing cell viability and proliferation in MDR cells compared to DOX treatment alone. Additionally, the combination of Ebs and DOX induced DNA fragmentation and exhibited G2/M phase cell cycle arrest. Immunofluorescent analysis revealed that the Ebs and DOX combination upregulated the expression of p53 and p21, which activated the mitochondrial-dependent apoptotic pathway. The combination treatment also enhanced the upregulation of proapoptotic markers such as Bax, Caspase-3, -9, and cytochrome C, while downregulating the expression of the antiapoptotic marker Bcl-2. Therefore, the current discoveries suggest that Ebs could be employed as a drug candidate for reversing MDR in cancer cells by regulating cellular redox homeostasis.</p></div>\",\"PeriodicalId\":9669,\"journal\":{\"name\":\"Cell Biochemistry and Function\",\"volume\":\"42 7\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Function\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbf.4134\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.4134","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多药耐药性(MDR)是癌症治疗中的一个重要问题,通常会在化疗过程中产生不良反应。Ebselen(Ebs)是一种合成的有机硒化合物,可影响癌细胞的细胞氧化还原状态。在这项研究中,我们观察到 Ebs 破坏了细胞的氧化还原平衡,并使耐药细胞对多柔比星(DOX)治疗敏感。Ebs 和 DOX 的结合会导致细胞内活性氧(ROS)水平和脂质过氧化增加,同时降低耐药细胞中硫氧还原酶(TrxR)和细胞抗氧化剂的活性。此外,与单独使用 DOX 治疗相比,这种联合疗法可降低 MDR 细胞的存活率和增殖率,因而具有显著的化疗增敏作用。此外,Ebs 和 DOX 的组合还能诱导 DNA 断裂,并表现出 G2/M 期细胞周期的停滞。免疫荧光分析表明,Ebs和DOX联用可上调p53和p21的表达,从而激活线粒体依赖性凋亡途径。联合治疗还增强了促凋亡标志物(如 Bax、Caspase-3、-9 和细胞色素 C)的上调,同时下调了抗凋亡标志物 Bcl-2 的表达。因此,目前的发现表明,Ebs 可作为候选药物,通过调节细胞氧化还原平衡来逆转癌细胞的 MDR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitization of Multidrug Resistant Cancer Cells to Doxorubicin Using Ebselen by Disturbing Cellular Redox Status

Multidrug resistance (MDR) poses a significant problem in cancer treatment, often causing adverse effects during chemotherapy. Ebselen (Ebs), a synthetic organoselenium compound, affects cellular redox status in cancer cells. In the study, we observed that Ebs disrupted cellular redox balance and sensitized drug-resistant cells to doxorubicin (DOX) treatment. The combination of Ebs and DOX led to increased intracellular reactive oxygen species (ROS) levels and lipid peroxidation while decreasing the activity of thioredoxin reductase (TrxR) and cellular antioxidants in drug-resistant cells. Furthermore, this combination treatment demonstrated notable chemosensitizing effects by reducing cell viability and proliferation in MDR cells compared to DOX treatment alone. Additionally, the combination of Ebs and DOX induced DNA fragmentation and exhibited G2/M phase cell cycle arrest. Immunofluorescent analysis revealed that the Ebs and DOX combination upregulated the expression of p53 and p21, which activated the mitochondrial-dependent apoptotic pathway. The combination treatment also enhanced the upregulation of proapoptotic markers such as Bax, Caspase-3, -9, and cytochrome C, while downregulating the expression of the antiapoptotic marker Bcl-2. Therefore, the current discoveries suggest that Ebs could be employed as a drug candidate for reversing MDR in cancer cells by regulating cellular redox homeostasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Function
Cell Biochemistry and Function 生物-生化与分子生物学
CiteScore
6.20
自引率
0.00%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease. The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信