{"title":"在本科生中开展 CRISPR-Cas9 介导的真核生物基因组编辑研究,传授基础生物化学技术。","authors":"Andrew J Tonsager, Laurie A Stargell","doi":"10.1002/bmb.21862","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-Cas9 technology is an established, powerful tool for genome editing through the ability to target specific DNA sequences of interest for introduction of desired genetic modifications. CRISPR-Cas9 is utilized for a variety of purposes, ranging from a research molecular biology tool to treatment for human diseases. Due to its prominence across a variety of applications, it is critical that undergraduates in the life sciences are educated on CRISPR-Cas9 technology. To this end, we created an intensive eight-week long course-based undergraduate research experience (CURE) designed for students to understand CRISPR-Cas9 genome editing and perform it in Saccharomyces cerevisiae. Students enrolled in the CURE participate in 2, 3-h sessions a week and are engaged in the entire process of CRISPR-Cas9 genome editing, from preparation of genome editing reagents to characterization of mutant yeast strains. During the process, students master fundamental techniques in the life sciences, including sterile technique, Polymerase Chain Reaction (PCR), primer design, sequencing requirements, and data analysis. The course is developed with flexibility in the schedule for repetition of techniques in the event of a failed experiment, providing an authentic research experience for the students. Additionally, we have developed the course to be easily modified for the editing of any yeast gene, offering the potential to expand the course in research-driven classroom or laboratory settings.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An undergraduate research experience in CRISPR-Cas9 mediated eukaryotic genome editing to teach fundamental biochemistry techniques.\",\"authors\":\"Andrew J Tonsager, Laurie A Stargell\",\"doi\":\"10.1002/bmb.21862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CRISPR-Cas9 technology is an established, powerful tool for genome editing through the ability to target specific DNA sequences of interest for introduction of desired genetic modifications. CRISPR-Cas9 is utilized for a variety of purposes, ranging from a research molecular biology tool to treatment for human diseases. Due to its prominence across a variety of applications, it is critical that undergraduates in the life sciences are educated on CRISPR-Cas9 technology. To this end, we created an intensive eight-week long course-based undergraduate research experience (CURE) designed for students to understand CRISPR-Cas9 genome editing and perform it in Saccharomyces cerevisiae. Students enrolled in the CURE participate in 2, 3-h sessions a week and are engaged in the entire process of CRISPR-Cas9 genome editing, from preparation of genome editing reagents to characterization of mutant yeast strains. During the process, students master fundamental techniques in the life sciences, including sterile technique, Polymerase Chain Reaction (PCR), primer design, sequencing requirements, and data analysis. The course is developed with flexibility in the schedule for repetition of techniques in the event of a failed experiment, providing an authentic research experience for the students. Additionally, we have developed the course to be easily modified for the editing of any yeast gene, offering the potential to expand the course in research-driven classroom or laboratory settings.</p>\",\"PeriodicalId\":8830,\"journal\":{\"name\":\"Biochemistry and Molecular Biology Education\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Molecular Biology Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1002/bmb.21862\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1002/bmb.21862","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
An undergraduate research experience in CRISPR-Cas9 mediated eukaryotic genome editing to teach fundamental biochemistry techniques.
CRISPR-Cas9 technology is an established, powerful tool for genome editing through the ability to target specific DNA sequences of interest for introduction of desired genetic modifications. CRISPR-Cas9 is utilized for a variety of purposes, ranging from a research molecular biology tool to treatment for human diseases. Due to its prominence across a variety of applications, it is critical that undergraduates in the life sciences are educated on CRISPR-Cas9 technology. To this end, we created an intensive eight-week long course-based undergraduate research experience (CURE) designed for students to understand CRISPR-Cas9 genome editing and perform it in Saccharomyces cerevisiae. Students enrolled in the CURE participate in 2, 3-h sessions a week and are engaged in the entire process of CRISPR-Cas9 genome editing, from preparation of genome editing reagents to characterization of mutant yeast strains. During the process, students master fundamental techniques in the life sciences, including sterile technique, Polymerase Chain Reaction (PCR), primer design, sequencing requirements, and data analysis. The course is developed with flexibility in the schedule for repetition of techniques in the event of a failed experiment, providing an authentic research experience for the students. Additionally, we have developed the course to be easily modified for the editing of any yeast gene, offering the potential to expand the course in research-driven classroom or laboratory settings.
期刊介绍:
The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including:
Innovative techniques in teaching and learning.
New pedagogical approaches.
Research in biochemistry and molecular biology education.
Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc.
Historical Reviews describing "Paths to Discovery".
Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics.
Reviews of relevant textbooks, software, and websites.
Descriptions of software for educational use.
Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.