聚苯乙烯表面的干生物膜:氧化处理对缓解生物膜的作用。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Emmanuel I Epelle, Ngozi Amaeze, William G Mackay, Mohammed Yaseen
{"title":"聚苯乙烯表面的干生物膜:氧化处理对缓解生物膜的作用。","authors":"Emmanuel I Epelle, Ngozi Amaeze, William G Mackay, Mohammed Yaseen","doi":"10.1080/08927014.2024.2411389","DOIUrl":null,"url":null,"abstract":"<p><p><i>Candida auris</i> and <i>Staphylococcus aureus</i> are associated with a wide range of infections, as they exhibit multidrug resistance - a growing health concern. In this study, gaseous ozone, and ultraviolet-C (UVC) radiation are applied as infection control measures to inactivate dry biofilms of these organisms on polystyrene surfaces. The dosages utilised herein are 1000 and 3000 ppm.min for ozone and 2864 and 11592 mJ.cm<sup>-2</sup> for UVC. Both organisms showed an increased sensitivity to UVC relative to ozone exposure in a bespoke decontamination chamber. While complete inactivation of both organisms (>7.5 CFU log) was realized after 60 mins of UVC application, this could not be achieved with ozonation for the same duration. However, a combined application of ozone and UVC yielded complete inactivation in only 20 mins. For both treatment methods, it was observed that dry biofilms of <i>S. aureus</i> were more difficult to inactivate than dry biofilms of <i>C. auris</i>. Compared to dry biofilms of <i>C. auris</i>, micrographs of wet <i>C. auris</i> biofilms revealed the presence of an abundance of extracellular material after treatments. Interestingly, wet biofilms were more difficult to inactivate than dry biofilms. These insights are crucial to preventing recalcitrant and recurrent infections <i>via</i> contact with contaminated polymeric surfaces.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dry biofilms on polystyrene surfaces: the role of oxidative treatments for their mitigation.\",\"authors\":\"Emmanuel I Epelle, Ngozi Amaeze, William G Mackay, Mohammed Yaseen\",\"doi\":\"10.1080/08927014.2024.2411389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Candida auris</i> and <i>Staphylococcus aureus</i> are associated with a wide range of infections, as they exhibit multidrug resistance - a growing health concern. In this study, gaseous ozone, and ultraviolet-C (UVC) radiation are applied as infection control measures to inactivate dry biofilms of these organisms on polystyrene surfaces. The dosages utilised herein are 1000 and 3000 ppm.min for ozone and 2864 and 11592 mJ.cm<sup>-2</sup> for UVC. Both organisms showed an increased sensitivity to UVC relative to ozone exposure in a bespoke decontamination chamber. While complete inactivation of both organisms (>7.5 CFU log) was realized after 60 mins of UVC application, this could not be achieved with ozonation for the same duration. However, a combined application of ozone and UVC yielded complete inactivation in only 20 mins. For both treatment methods, it was observed that dry biofilms of <i>S. aureus</i> were more difficult to inactivate than dry biofilms of <i>C. auris</i>. Compared to dry biofilms of <i>C. auris</i>, micrographs of wet <i>C. auris</i> biofilms revealed the presence of an abundance of extracellular material after treatments. Interestingly, wet biofilms were more difficult to inactivate than dry biofilms. These insights are crucial to preventing recalcitrant and recurrent infections <i>via</i> contact with contaminated polymeric surfaces.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2024.2411389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2411389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

白色念珠菌和金黄色葡萄球菌与多种感染有关,因为它们具有多重耐药性--这是一个日益严重的健康问题。本研究采用气态臭氧和紫外线(UVC)辐射作为感染控制措施,灭活聚苯乙烯表面的干生物膜。臭氧的剂量分别为 1000 和 3000 ppm.min,紫外线的剂量分别为 2864 和 11592 mJ.cm-2。在定制的去污室中,相对于臭氧暴露,两种生物对紫外线的敏感性都有所提高。在使用紫外线 60 分钟后,两种生物(大于 7.5 CFU log)都被完全灭活,但在相同时间内使用臭氧则无法达到这一效果。不过,臭氧和紫外线联合使用仅需 20 分钟就能完全灭活。两种处理方法都能观察到,金黄色葡萄球菌的干生物膜比栗色葡萄球菌的干生物膜更难灭活。与干的金黄色葡萄球菌生物膜相比,湿的金黄色葡萄球菌生物膜的显微照片显示,处理后存在大量的细胞外物质。有趣的是,湿生物膜比干生物膜更难被灭活。这些见解对于预防因接触受污染的聚合物表面而引起的顽固性和复发性感染至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dry biofilms on polystyrene surfaces: the role of oxidative treatments for their mitigation.

Candida auris and Staphylococcus aureus are associated with a wide range of infections, as they exhibit multidrug resistance - a growing health concern. In this study, gaseous ozone, and ultraviolet-C (UVC) radiation are applied as infection control measures to inactivate dry biofilms of these organisms on polystyrene surfaces. The dosages utilised herein are 1000 and 3000 ppm.min for ozone and 2864 and 11592 mJ.cm-2 for UVC. Both organisms showed an increased sensitivity to UVC relative to ozone exposure in a bespoke decontamination chamber. While complete inactivation of both organisms (>7.5 CFU log) was realized after 60 mins of UVC application, this could not be achieved with ozonation for the same duration. However, a combined application of ozone and UVC yielded complete inactivation in only 20 mins. For both treatment methods, it was observed that dry biofilms of S. aureus were more difficult to inactivate than dry biofilms of C. auris. Compared to dry biofilms of C. auris, micrographs of wet C. auris biofilms revealed the presence of an abundance of extracellular material after treatments. Interestingly, wet biofilms were more difficult to inactivate than dry biofilms. These insights are crucial to preventing recalcitrant and recurrent infections via contact with contaminated polymeric surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信