{"title":"通过增强型深度学习模型进行睾丸细胞成分分析,快速检测小鼠精子生成缺陷。","authors":"Nianfei Ao, Min Zang, Yue Lu, Yiping Jiao, Haoda Lu, Chengfei Cai, Xiangxue Wang, Xin Li, Minge Xie, Tingting Zhao, Jun Xu, Eugene Yujun Xu","doi":"10.1111/andr.13773","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Histological analysis of the testicular sections is paramount in infertility research but tedious and often requires months of training and practice.</p><p><strong>Objectives: </strong>Establish an expeditious histopathological analysis of mutant mice testicular sections stained with commonly available hematoxylin and eosin (H&E) via enhanced deep learning model MATERIALS AND METHODS: Automated segmentation and cellular composition analysis on the testes of six mouse reproductive mutants of key reproductive gene family, DAZ and PUMILIO gene family via H&E-stained mouse testicular sections.</p><p><strong>Results: </strong>We improved the deep learning model with human interaction to achieve better pixel accuracy and reduced annotation time for histologists; revealed distinctive cell composition features consistent with previously published phenotypes for four mutants and novel spermatogenic defects in two newly generated mutants; established a fast spermatogenic defect detection protocol for quantitative and qualitative assessment of testicular defects within 2.5-3 h, requiring as few as 8 H&E-stained testis sections; uncovered novel defects in AcDKO and a meiotic arrest defect in HDBKO, supporting the synergistic interaction of Sertoli Pum1 and Pum2 as well as redundant meiotic function of Dazl and Boule.</p><p><strong>Discussion: </strong>Our testicular compositional analysis not only could reveal spermatogenic defects from staged seminiferous tubules but also from unstaged seminiferous tubule sections.</p><p><strong>Conclusion: </strong>Our SCSD-Net model offers a rapid protocol for detecting reproductive defects from H&E-stained testicular sections in as few as 3 h, providing both quantitative and qualitative assessments of spermatogenic defects. Our analysis uncovered evidence supporting the synergistic interaction of Sertoli PUM1 and PUM2 in maintaining average testis size, and redundant roles of DAZ family proteins DAZL and BOULE in meiosis.</p>","PeriodicalId":7898,"journal":{"name":"Andrology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid detection of mouse spermatogenic defects by testicular cellular composition analysis via enhanced deep learning model.\",\"authors\":\"Nianfei Ao, Min Zang, Yue Lu, Yiping Jiao, Haoda Lu, Chengfei Cai, Xiangxue Wang, Xin Li, Minge Xie, Tingting Zhao, Jun Xu, Eugene Yujun Xu\",\"doi\":\"10.1111/andr.13773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Histological analysis of the testicular sections is paramount in infertility research but tedious and often requires months of training and practice.</p><p><strong>Objectives: </strong>Establish an expeditious histopathological analysis of mutant mice testicular sections stained with commonly available hematoxylin and eosin (H&E) via enhanced deep learning model MATERIALS AND METHODS: Automated segmentation and cellular composition analysis on the testes of six mouse reproductive mutants of key reproductive gene family, DAZ and PUMILIO gene family via H&E-stained mouse testicular sections.</p><p><strong>Results: </strong>We improved the deep learning model with human interaction to achieve better pixel accuracy and reduced annotation time for histologists; revealed distinctive cell composition features consistent with previously published phenotypes for four mutants and novel spermatogenic defects in two newly generated mutants; established a fast spermatogenic defect detection protocol for quantitative and qualitative assessment of testicular defects within 2.5-3 h, requiring as few as 8 H&E-stained testis sections; uncovered novel defects in AcDKO and a meiotic arrest defect in HDBKO, supporting the synergistic interaction of Sertoli Pum1 and Pum2 as well as redundant meiotic function of Dazl and Boule.</p><p><strong>Discussion: </strong>Our testicular compositional analysis not only could reveal spermatogenic defects from staged seminiferous tubules but also from unstaged seminiferous tubule sections.</p><p><strong>Conclusion: </strong>Our SCSD-Net model offers a rapid protocol for detecting reproductive defects from H&E-stained testicular sections in as few as 3 h, providing both quantitative and qualitative assessments of spermatogenic defects. Our analysis uncovered evidence supporting the synergistic interaction of Sertoli PUM1 and PUM2 in maintaining average testis size, and redundant roles of DAZ family proteins DAZL and BOULE in meiosis.</p>\",\"PeriodicalId\":7898,\"journal\":{\"name\":\"Andrology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Andrology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/andr.13773\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANDROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Andrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/andr.13773","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANDROLOGY","Score":null,"Total":0}
Rapid detection of mouse spermatogenic defects by testicular cellular composition analysis via enhanced deep learning model.
Background: Histological analysis of the testicular sections is paramount in infertility research but tedious and often requires months of training and practice.
Objectives: Establish an expeditious histopathological analysis of mutant mice testicular sections stained with commonly available hematoxylin and eosin (H&E) via enhanced deep learning model MATERIALS AND METHODS: Automated segmentation and cellular composition analysis on the testes of six mouse reproductive mutants of key reproductive gene family, DAZ and PUMILIO gene family via H&E-stained mouse testicular sections.
Results: We improved the deep learning model with human interaction to achieve better pixel accuracy and reduced annotation time for histologists; revealed distinctive cell composition features consistent with previously published phenotypes for four mutants and novel spermatogenic defects in two newly generated mutants; established a fast spermatogenic defect detection protocol for quantitative and qualitative assessment of testicular defects within 2.5-3 h, requiring as few as 8 H&E-stained testis sections; uncovered novel defects in AcDKO and a meiotic arrest defect in HDBKO, supporting the synergistic interaction of Sertoli Pum1 and Pum2 as well as redundant meiotic function of Dazl and Boule.
Discussion: Our testicular compositional analysis not only could reveal spermatogenic defects from staged seminiferous tubules but also from unstaged seminiferous tubule sections.
Conclusion: Our SCSD-Net model offers a rapid protocol for detecting reproductive defects from H&E-stained testicular sections in as few as 3 h, providing both quantitative and qualitative assessments of spermatogenic defects. Our analysis uncovered evidence supporting the synergistic interaction of Sertoli PUM1 and PUM2 in maintaining average testis size, and redundant roles of DAZ family proteins DAZL and BOULE in meiosis.
期刊介绍:
Andrology is the study of the male reproductive system and other male gender related health issues. Andrology deals with basic and clinical aspects of the male reproductive system (gonads, endocrine and accessory organs) in all species, including the diagnosis and treatment of medical problems associated with sexual development, infertility, sexual dysfunction, sex hormone action and other urological problems. In medicine, Andrology as a specialty is a recent development, as it had previously been considered a subspecialty of urology or endocrinology