糖尿病会诱导成本层蛋白的改变,并增加心肌细胞的硬度。

IF 5 2区 生物学 Q2 CELL BIOLOGY
Gerardo Romanelli, Lihuén Villarreal, Camila Espasandín, Juan Claudio Benech
{"title":"糖尿病会诱导成本层蛋白的改变,并增加心肌细胞的硬度。","authors":"Gerardo Romanelli, Lihuén Villarreal, Camila Espasandín, Juan Claudio Benech","doi":"10.1152/ajpcell.00273.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Several studies have demonstrated that diabetes mellitus can increase the risk of cardiovascular disease and remains the principal cause of death in these patients. Costameres connect the sarcolemma with the cytoskeleton and extracellular matrix, facilitating the transmission of mechanical forces and cell signaling. They are related to cardiac physiology because individual cardiac cells are connected by intercalated discs that synchronize muscle contraction. Diabetes impacts the nanomechanical properties of cardiomyocytes, resulting in increased cellular and left ventricular stiffness, as evidenced in clinical studies of these patients. The question of whether costameric proteins are affected by diabetes in the heart has not been studied. This work analyzes whether type 1 diabetes mellitus (T1DM) modifies the costameric proteins and coincidentally changes the cellular mechanics in the same cardiomyocytes. The samples were analyzed by immunotechniques using laser confocal microscopy. Significant statistical differences were found in the spatial arrangement of the costameric proteins. However, these differences are not due to their expression. Atomic force microscopy was used to compare intrinsic cellular stiffness between diabetic and normal cardiomyocytes and obtain the first elasticity map sections of diabetic living cardiomyocytes. Data obtained demonstrated that diabetic cardiomyocytes had higher stiffness than control. The present work shows experimental evidence that intracellular changes related to cell-cell and cell-extracellular matrix communication occur, which could be related to cardiac pathogenic mechanisms. These changes could contribute to alterations in the mechanical and electrical properties of cardiomyocytes and, consequently, to diabetic cardiomyopathy.<b>NEW & NOTEWORTHY</b> The structural organization of cardiomyocyte proteins is critical for their efficient functioning as a contractile unit in the heart. This work shows that diabetes mellitus induces significant changes in the spatial organization of costamere proteins, <i>t</i> tubules, and intercalated discs. We obtained the first elasticity map sections of living diabetic cardiomyocytes. The results show statistical differences in the map sections of diabetic and control cardiomyocytes, with diabetic cardiomyocytes being stiffer than normal ones.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diabetes induces modifications in costameric proteins and increases cardiomyocyte stiffness.\",\"authors\":\"Gerardo Romanelli, Lihuén Villarreal, Camila Espasandín, Juan Claudio Benech\",\"doi\":\"10.1152/ajpcell.00273.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several studies have demonstrated that diabetes mellitus can increase the risk of cardiovascular disease and remains the principal cause of death in these patients. Costameres connect the sarcolemma with the cytoskeleton and extracellular matrix, facilitating the transmission of mechanical forces and cell signaling. They are related to cardiac physiology because individual cardiac cells are connected by intercalated discs that synchronize muscle contraction. Diabetes impacts the nanomechanical properties of cardiomyocytes, resulting in increased cellular and left ventricular stiffness, as evidenced in clinical studies of these patients. The question of whether costameric proteins are affected by diabetes in the heart has not been studied. This work analyzes whether type 1 diabetes mellitus (T1DM) modifies the costameric proteins and coincidentally changes the cellular mechanics in the same cardiomyocytes. The samples were analyzed by immunotechniques using laser confocal microscopy. Significant statistical differences were found in the spatial arrangement of the costameric proteins. However, these differences are not due to their expression. Atomic force microscopy was used to compare intrinsic cellular stiffness between diabetic and normal cardiomyocytes and obtain the first elasticity map sections of diabetic living cardiomyocytes. Data obtained demonstrated that diabetic cardiomyocytes had higher stiffness than control. The present work shows experimental evidence that intracellular changes related to cell-cell and cell-extracellular matrix communication occur, which could be related to cardiac pathogenic mechanisms. These changes could contribute to alterations in the mechanical and electrical properties of cardiomyocytes and, consequently, to diabetic cardiomyopathy.<b>NEW & NOTEWORTHY</b> The structural organization of cardiomyocyte proteins is critical for their efficient functioning as a contractile unit in the heart. This work shows that diabetes mellitus induces significant changes in the spatial organization of costamere proteins, <i>t</i> tubules, and intercalated discs. We obtained the first elasticity map sections of living diabetic cardiomyocytes. The results show statistical differences in the map sections of diabetic and control cardiomyocytes, with diabetic cardiomyocytes being stiffer than normal ones.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00273.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00273.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多项研究表明,糖尿病会增加罹患心血管疾病的风险,并且仍然是这些患者死亡的主要原因。肋膜将肌浆与细胞骨架和细胞外基质连接起来,促进了机械力和细胞信号的传递。它们与心脏生理学有关,因为单个心脏细胞由可同步肌肉收缩的闰盘连接。糖尿病会影响心肌细胞的纳米机械特性,导致细胞和左心室硬度增加,对这些患者的临床研究就证明了这一点。至于心脏中的 Costameric 蛋白是否会受到糖尿病的影响,目前还没有研究。这项研究分析了 T1DM 是否会改变成本层蛋白,并巧合地改变相同心肌细胞的细胞力学。样本通过激光共聚焦显微镜的免疫技术进行分析。结果表明,心肌细胞中的共价键蛋白在空间排列上存在显著的统计学差异。然而,这些差异并不是由于它们的表达所致。利用原子力显微镜比较了糖尿病和正常心肌细胞的内在细胞硬度,并首次获得了糖尿病活体心肌细胞的弹性图切片。获得的数据表明,糖尿病心肌细胞的硬度高于对照组。本研究通过实验证明,细胞内发生了与细胞-细胞和细胞-细胞外基质沟通有关的变化,这些变化可能与心脏致病机制有关。这些变化可能会导致心肌细胞机械和电特性的改变,进而引发糖尿病心肌病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diabetes induces modifications in costameric proteins and increases cardiomyocyte stiffness.

Several studies have demonstrated that diabetes mellitus can increase the risk of cardiovascular disease and remains the principal cause of death in these patients. Costameres connect the sarcolemma with the cytoskeleton and extracellular matrix, facilitating the transmission of mechanical forces and cell signaling. They are related to cardiac physiology because individual cardiac cells are connected by intercalated discs that synchronize muscle contraction. Diabetes impacts the nanomechanical properties of cardiomyocytes, resulting in increased cellular and left ventricular stiffness, as evidenced in clinical studies of these patients. The question of whether costameric proteins are affected by diabetes in the heart has not been studied. This work analyzes whether type 1 diabetes mellitus (T1DM) modifies the costameric proteins and coincidentally changes the cellular mechanics in the same cardiomyocytes. The samples were analyzed by immunotechniques using laser confocal microscopy. Significant statistical differences were found in the spatial arrangement of the costameric proteins. However, these differences are not due to their expression. Atomic force microscopy was used to compare intrinsic cellular stiffness between diabetic and normal cardiomyocytes and obtain the first elasticity map sections of diabetic living cardiomyocytes. Data obtained demonstrated that diabetic cardiomyocytes had higher stiffness than control. The present work shows experimental evidence that intracellular changes related to cell-cell and cell-extracellular matrix communication occur, which could be related to cardiac pathogenic mechanisms. These changes could contribute to alterations in the mechanical and electrical properties of cardiomyocytes and, consequently, to diabetic cardiomyopathy.NEW & NOTEWORTHY The structural organization of cardiomyocyte proteins is critical for their efficient functioning as a contractile unit in the heart. This work shows that diabetes mellitus induces significant changes in the spatial organization of costamere proteins, t tubules, and intercalated discs. We obtained the first elasticity map sections of living diabetic cardiomyocytes. The results show statistical differences in the map sections of diabetic and control cardiomyocytes, with diabetic cardiomyocytes being stiffer than normal ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信