区域交感神经血管传导与交感神经对青壮年静息时血压的传导之间的关系。

IF 2.2 3区 医学 Q3 PHYSIOLOGY
Devin G McCarthy, Massimo Nardone, Kathryn Pfundt, Philip J Millar
{"title":"区域交感神经血管传导与交感神经对青壮年静息时血压的传导之间的关系。","authors":"Devin G McCarthy, Massimo Nardone, Kathryn Pfundt, Philip J Millar","doi":"10.1152/ajpregu.00199.2024","DOIUrl":null,"url":null,"abstract":"<p><p>A burst of muscle sympathetic nerve activity (MSNA) induces vasoconstriction that transiently reduces regional vascular conductance and increases systemic blood pressure (BP) over the subsequent 4-8 cardiac cycles. These responses are termed sympathetic neurovascular transduction and sympathetic transduction of BP, respectively. Sympathetic transduction of BP is commonly calculated and interpreted as a proxy measure for regional sympathetic neurovascular transduction despite the systemic nature of BP regulation. The present analysis tested whether the peak change in signal-averaged sympathetic transduction of BP was correlated to the change in regional sympathetic vascular transduction at rest. Fourteen adults (5 females, 23 ± 3 yr) arrived at the laboratory, ate a standardized meal, and rested for 90-120 min. MSNA (fibular nerve microneurography), heart rate (electrocardiography), beat-to-beat BP (finger photoplethysmography), and superficial femoral artery blood flow (Doppler ultrasound) were obtained continuously for 10 min in the supine position. Femoral vascular conductance (FVC) was calculated as blood flow divided by mean arterial BP. The peak change in diastolic BP following a burst of MSNA was correlated to the corresponding nadir change in femoral vascular conductance (<i>r</i> = -0.58 [-0.07 to -0.85], <i>P</i> = 0.03) and superficial femoral artery blood flow (<i>r</i> = -0.54 [-0.17 to -0.83], <i>P</i> = 0.04). The nadir change in diastolic BP in cardiac cycles not following an MSNA burst was correlated to the peak change in femoral vascular conductance (<i>r</i> = -0.42 [-0.83 to 0.00], <i>P</i> = 0.05), but not superficial femoral artery blood flow (<i>r</i> = 0.41 [-0.77 to 0.15], <i>P</i> = 0.14). In conclusion, more commonly assessed sympathetic transduction of BP provides moderate insight into regional sympathetic neurovascular transduction.<b>NEW & NOTEWORTHY</b> The majority of studies have used signal-averaged sympathetic transduction of blood pressure as a generalized measure of transduction. In this analysis, we show that sympathetic transduction of blood pressure and regional sympathetic vascular transduction were moderately correlated in healthy adults at rest. The moderate strength of this relationship highlights potential differences between regional and systemic assessments of sympathetic transduction and suggests that future work should choose the transduction measure best aligned with the research question.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationship between regional sympathetic vascular transduction and sympathetic transduction of blood pressure in young adults at rest.\",\"authors\":\"Devin G McCarthy, Massimo Nardone, Kathryn Pfundt, Philip J Millar\",\"doi\":\"10.1152/ajpregu.00199.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A burst of muscle sympathetic nerve activity (MSNA) induces vasoconstriction that transiently reduces regional vascular conductance and increases systemic blood pressure (BP) over the subsequent 4-8 cardiac cycles. These responses are termed sympathetic neurovascular transduction and sympathetic transduction of BP, respectively. Sympathetic transduction of BP is commonly calculated and interpreted as a proxy measure for regional sympathetic neurovascular transduction despite the systemic nature of BP regulation. The present analysis tested whether the peak change in signal-averaged sympathetic transduction of BP was correlated to the change in regional sympathetic vascular transduction at rest. Fourteen adults (5 females, 23 ± 3 yr) arrived at the laboratory, ate a standardized meal, and rested for 90-120 min. MSNA (fibular nerve microneurography), heart rate (electrocardiography), beat-to-beat BP (finger photoplethysmography), and superficial femoral artery blood flow (Doppler ultrasound) were obtained continuously for 10 min in the supine position. Femoral vascular conductance (FVC) was calculated as blood flow divided by mean arterial BP. The peak change in diastolic BP following a burst of MSNA was correlated to the corresponding nadir change in femoral vascular conductance (<i>r</i> = -0.58 [-0.07 to -0.85], <i>P</i> = 0.03) and superficial femoral artery blood flow (<i>r</i> = -0.54 [-0.17 to -0.83], <i>P</i> = 0.04). The nadir change in diastolic BP in cardiac cycles not following an MSNA burst was correlated to the peak change in femoral vascular conductance (<i>r</i> = -0.42 [-0.83 to 0.00], <i>P</i> = 0.05), but not superficial femoral artery blood flow (<i>r</i> = 0.41 [-0.77 to 0.15], <i>P</i> = 0.14). In conclusion, more commonly assessed sympathetic transduction of BP provides moderate insight into regional sympathetic neurovascular transduction.<b>NEW & NOTEWORTHY</b> The majority of studies have used signal-averaged sympathetic transduction of blood pressure as a generalized measure of transduction. In this analysis, we show that sympathetic transduction of blood pressure and regional sympathetic vascular transduction were moderately correlated in healthy adults at rest. The moderate strength of this relationship highlights potential differences between regional and systemic assessments of sympathetic transduction and suggests that future work should choose the transduction measure best aligned with the research question.</p>\",\"PeriodicalId\":7630,\"journal\":{\"name\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpregu.00199.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00199.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肌肉交感神经活动(MSNA)会诱发血管收缩,从而在随后的 4-8 个心动周期中短暂降低区域血管传导性并升高全身血压(BP)。这些反应分别称为交感神经血管转导和交感神经血压转导。交感神经对血压的转导通常被计算并解释为区域交感神经血管转导的替代指标,尽管血压调节具有系统性。本分析测试了信号平均交感神经血压传导的峰值变化是否与静息时区域交感神经血管传导的变化相关。14 名成年人(5 名女性,23±3 岁)来到实验室,吃了一顿标准餐后休息了 90-120 分钟。在仰卧位的 10 分钟内连续采集 MSNA(腓神经微神经电图)、心率(心电图)、逐搏血压(指压式血压计)和股浅动脉血流(多普勒超声)。股血管传导率的计算方法是血流量除以平均动脉血压。MSNA爆发后舒张压的峰值变化与股动脉血管传导率(r=-0.58 [-0.07 to -0.85],P=0.03)和股浅动脉血流(r=-0.54 [-0.17 to -0.83],P=0.04)的相应低点变化相关。在非 MSNA 爆发后的心动周期中,舒张压的最低点变化与股血管传导的峰值变化相关(r=-0.42 [-0.83 至 0.00],P=0.05),但与股浅动脉血流无关(r=0.41 [-0.77 至 0.15],P=0.14)。总之,更常评估的交感神经对血压的传导可适度洞察区域交感神经血管传导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relationship between regional sympathetic vascular transduction and sympathetic transduction of blood pressure in young adults at rest.

A burst of muscle sympathetic nerve activity (MSNA) induces vasoconstriction that transiently reduces regional vascular conductance and increases systemic blood pressure (BP) over the subsequent 4-8 cardiac cycles. These responses are termed sympathetic neurovascular transduction and sympathetic transduction of BP, respectively. Sympathetic transduction of BP is commonly calculated and interpreted as a proxy measure for regional sympathetic neurovascular transduction despite the systemic nature of BP regulation. The present analysis tested whether the peak change in signal-averaged sympathetic transduction of BP was correlated to the change in regional sympathetic vascular transduction at rest. Fourteen adults (5 females, 23 ± 3 yr) arrived at the laboratory, ate a standardized meal, and rested for 90-120 min. MSNA (fibular nerve microneurography), heart rate (electrocardiography), beat-to-beat BP (finger photoplethysmography), and superficial femoral artery blood flow (Doppler ultrasound) were obtained continuously for 10 min in the supine position. Femoral vascular conductance (FVC) was calculated as blood flow divided by mean arterial BP. The peak change in diastolic BP following a burst of MSNA was correlated to the corresponding nadir change in femoral vascular conductance (r = -0.58 [-0.07 to -0.85], P = 0.03) and superficial femoral artery blood flow (r = -0.54 [-0.17 to -0.83], P = 0.04). The nadir change in diastolic BP in cardiac cycles not following an MSNA burst was correlated to the peak change in femoral vascular conductance (r = -0.42 [-0.83 to 0.00], P = 0.05), but not superficial femoral artery blood flow (r = 0.41 [-0.77 to 0.15], P = 0.14). In conclusion, more commonly assessed sympathetic transduction of BP provides moderate insight into regional sympathetic neurovascular transduction.NEW & NOTEWORTHY The majority of studies have used signal-averaged sympathetic transduction of blood pressure as a generalized measure of transduction. In this analysis, we show that sympathetic transduction of blood pressure and regional sympathetic vascular transduction were moderately correlated in healthy adults at rest. The moderate strength of this relationship highlights potential differences between regional and systemic assessments of sympathetic transduction and suggests that future work should choose the transduction measure best aligned with the research question.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
3.60%
发文量
145
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信