Yaming Guo , Meng Li , Keqiang Li , Huiping Li , Yunxuan Li
{"title":"揭示交通事故持续时间的决定因素:利用因果森林框架和去偏差机器学习进行因果调查。","authors":"Yaming Guo , Meng Li , Keqiang Li , Huiping Li , Yunxuan Li","doi":"10.1016/j.aap.2024.107806","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting the duration of traffic incidents is challenging due to their stochastic nature. Accurate predictions can greatly benefit end-users by informing their route choices and safety warnings, while helping traffic operation managers more effectively manage non-recurrent traffic congestion and enhance road safety. This study conducts a comprehensive causal analysis of traffic incident duration using a data collected over a long time and including different types of roads across the city of Tianjin, China. Employing the innovative framework of causal forests with biased machine learning (CF-DML) techniques, this study advances beyond traditional methods by focusing on interpreting the causal relationships between various factors and incident duration, emphasizing the role of heterogeneity among these factors. The CF-DML framework enables the assessment of the average treatment effects (ATEs) of various factors on incident duration. Notably, the significant influence of road type and suburban setting on treatment effects is underscored, which is generally consistent with the results obtained through classical methods. Second, to look more closely at the important factors such as road and collision types, a conditional average treatment effects (CATE) analysis is conducted, explaining heterogeneity through a causal heterogeneity tree. Third, based on insights from causal analysis, policies related to lane configurations are explored, emphasizing the necessity of considering causal effects in traffic management decisions. The CF-DML framework enhances our understanding of traffic incident dynamics, contributing to improved road safety and traffic flow in diverse urban environments.</div></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"208 ","pages":"Article 107806"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the determinants of traffic incident duration: A causal investigation using the framework of causal forests with debiased machine learning\",\"authors\":\"Yaming Guo , Meng Li , Keqiang Li , Huiping Li , Yunxuan Li\",\"doi\":\"10.1016/j.aap.2024.107806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Predicting the duration of traffic incidents is challenging due to their stochastic nature. Accurate predictions can greatly benefit end-users by informing their route choices and safety warnings, while helping traffic operation managers more effectively manage non-recurrent traffic congestion and enhance road safety. This study conducts a comprehensive causal analysis of traffic incident duration using a data collected over a long time and including different types of roads across the city of Tianjin, China. Employing the innovative framework of causal forests with biased machine learning (CF-DML) techniques, this study advances beyond traditional methods by focusing on interpreting the causal relationships between various factors and incident duration, emphasizing the role of heterogeneity among these factors. The CF-DML framework enables the assessment of the average treatment effects (ATEs) of various factors on incident duration. Notably, the significant influence of road type and suburban setting on treatment effects is underscored, which is generally consistent with the results obtained through classical methods. Second, to look more closely at the important factors such as road and collision types, a conditional average treatment effects (CATE) analysis is conducted, explaining heterogeneity through a causal heterogeneity tree. Third, based on insights from causal analysis, policies related to lane configurations are explored, emphasizing the necessity of considering causal effects in traffic management decisions. The CF-DML framework enhances our understanding of traffic incident dynamics, contributing to improved road safety and traffic flow in diverse urban environments.</div></div>\",\"PeriodicalId\":6926,\"journal\":{\"name\":\"Accident; analysis and prevention\",\"volume\":\"208 \",\"pages\":\"Article 107806\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accident; analysis and prevention\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001457524003518\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ERGONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457524003518","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
Unraveling the determinants of traffic incident duration: A causal investigation using the framework of causal forests with debiased machine learning
Predicting the duration of traffic incidents is challenging due to their stochastic nature. Accurate predictions can greatly benefit end-users by informing their route choices and safety warnings, while helping traffic operation managers more effectively manage non-recurrent traffic congestion and enhance road safety. This study conducts a comprehensive causal analysis of traffic incident duration using a data collected over a long time and including different types of roads across the city of Tianjin, China. Employing the innovative framework of causal forests with biased machine learning (CF-DML) techniques, this study advances beyond traditional methods by focusing on interpreting the causal relationships between various factors and incident duration, emphasizing the role of heterogeneity among these factors. The CF-DML framework enables the assessment of the average treatment effects (ATEs) of various factors on incident duration. Notably, the significant influence of road type and suburban setting on treatment effects is underscored, which is generally consistent with the results obtained through classical methods. Second, to look more closely at the important factors such as road and collision types, a conditional average treatment effects (CATE) analysis is conducted, explaining heterogeneity through a causal heterogeneity tree. Third, based on insights from causal analysis, policies related to lane configurations are explored, emphasizing the necessity of considering causal effects in traffic management decisions. The CF-DML framework enhances our understanding of traffic incident dynamics, contributing to improved road safety and traffic flow in diverse urban environments.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.