7-(三氟甲基)吲嗪衍生物对阿拉伯按蚊的杀幼虫活性、分子对接和分子动力学研究

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Harshada Rambaboo Singh, Priya Tiwari, Pran Kishore Deb, Gourav Rakshit, Prasenjit Maity, Viresh Mohanlall, Raquel M Gleiser, Katharigatta N Venugopala, Sandeep Chandrashekharappa
{"title":"7-(三氟甲基)吲嗪衍生物对阿拉伯按蚊的杀幼虫活性、分子对接和分子动力学研究","authors":"Harshada Rambaboo Singh, Priya Tiwari, Pran Kishore Deb, Gourav Rakshit, Prasenjit Maity, Viresh Mohanlall, Raquel M Gleiser, Katharigatta N Venugopala, Sandeep Chandrashekharappa","doi":"10.1007/s11030-024-10994-7","DOIUrl":null,"url":null,"abstract":"<p><p>A novel series of 7-(trifluoromethyl)indolizine derivatives (4a-4n) was synthesized using a 1,3-Dipolar cycloaddition reaction. Structure elucidation of the synthesized compounds was done using various spectroscopic techniques. Compounds were assessed for their larvicidal activity against Anopheles arabiensis. Exposure of Anopheles arabiensis larvae to a series of 7-(trifluoromethyl)indolizine at 4 µg/mL for 24 and 48 h resulted in moderate to high larval mortality rates. Among them, compounds 4b, 4a, 4g, and 4m exhibited the most promising larvicidal activities, with mortality rates of 94.4%, 93.3%, 80.00%, and 85.6%, respectively, compared to controls, Acetone and Temephos. The structural activity relationship analysis of the evaluated compounds revealed that substitution with halogens or electron-withdrawing groups (CN, F, Cl, Br) at the para position of the benzoyl group is crucial for achieving promising larvicidal activity. Molecular docking studies were carried out involving six potential larvicidal target proteins to predict how the tested compounds might work. Compounds 4a and 4b showed strong binding to the Mosquito Juvenile Hormone-Binding Protein (5V13). Molecular dynamics (MD) simulations confirmed the stability of the protein-ligand complexes over the simulation period, reinforcing the reliability of the docking results. Compounds 4a and 4b also exhibited favourable ADMET profiles, showing high oral bioavailability, good permeability, moderate distribution, low plasma protein binding, sufficient metabolic stability, efficient renal clearance and low toxicity. Given the crucial role of Juvenile Hormone in regulating gene expression and developmental pathways through receptor interactions, compounds 4a and 4b show promise as inhibitors of this protein. Inhibiting this process could hinder larval growth and reproduction, presenting a promising approach for early-stage mosquito larvicidal activity. Therefore, compounds 4a and 4b represent lead candidates for further optimization and the development of new larvicidal agents.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Larvicidal activity, molecular docking, and molecular dynamics studies of 7-(trifluoromethyl)indolizine derivatives against Anopheles arabiensis.\",\"authors\":\"Harshada Rambaboo Singh, Priya Tiwari, Pran Kishore Deb, Gourav Rakshit, Prasenjit Maity, Viresh Mohanlall, Raquel M Gleiser, Katharigatta N Venugopala, Sandeep Chandrashekharappa\",\"doi\":\"10.1007/s11030-024-10994-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel series of 7-(trifluoromethyl)indolizine derivatives (4a-4n) was synthesized using a 1,3-Dipolar cycloaddition reaction. Structure elucidation of the synthesized compounds was done using various spectroscopic techniques. Compounds were assessed for their larvicidal activity against Anopheles arabiensis. Exposure of Anopheles arabiensis larvae to a series of 7-(trifluoromethyl)indolizine at 4 µg/mL for 24 and 48 h resulted in moderate to high larval mortality rates. Among them, compounds 4b, 4a, 4g, and 4m exhibited the most promising larvicidal activities, with mortality rates of 94.4%, 93.3%, 80.00%, and 85.6%, respectively, compared to controls, Acetone and Temephos. The structural activity relationship analysis of the evaluated compounds revealed that substitution with halogens or electron-withdrawing groups (CN, F, Cl, Br) at the para position of the benzoyl group is crucial for achieving promising larvicidal activity. Molecular docking studies were carried out involving six potential larvicidal target proteins to predict how the tested compounds might work. Compounds 4a and 4b showed strong binding to the Mosquito Juvenile Hormone-Binding Protein (5V13). Molecular dynamics (MD) simulations confirmed the stability of the protein-ligand complexes over the simulation period, reinforcing the reliability of the docking results. Compounds 4a and 4b also exhibited favourable ADMET profiles, showing high oral bioavailability, good permeability, moderate distribution, low plasma protein binding, sufficient metabolic stability, efficient renal clearance and low toxicity. Given the crucial role of Juvenile Hormone in regulating gene expression and developmental pathways through receptor interactions, compounds 4a and 4b show promise as inhibitors of this protein. Inhibiting this process could hinder larval growth and reproduction, presenting a promising approach for early-stage mosquito larvicidal activity. Therefore, compounds 4a and 4b represent lead candidates for further optimization and the development of new larvicidal agents.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-10994-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-10994-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

通过 1,3-Dipolar 环加成反应合成了一系列新型 7-(三氟甲基)吲嗪衍生物 (4a-4n)。利用各种光谱技术对合成的化合物进行了结构阐释。评估了化合物对阿拉伯按蚊的杀幼虫活性。将阿拉伯按蚊幼虫暴露于 4 µg/mL 的一系列 7-(三氟甲基)吲嗪中 24 小时和 48 小时后,幼虫死亡率为中等至高等。其中,化合物 4b、4a、4g 和 4m 的杀幼虫剂活性最高,与对照组、丙酮和特灭磷相比,死亡率分别为 94.4%、93.3%、80.00% 和 85.6%。对所评价化合物的结构活性关系分析表明,在苯甲酰基的对位上取代卤素或取电子基团(CN、F、Cl、Br)是获得良好杀幼虫剂活性的关键。我们对六种潜在的杀幼虫剂靶蛋白进行了分子对接研究,以预测受试化合物的作用方式。化合物 4a 和 4b 显示出与蚊子幼虫激素结合蛋白 (5V13) 的强结合力。分子动力学(MD)模拟证实了蛋白质配体复合物在模拟期间的稳定性,从而加强了对接结果的可靠性。化合物 4a 和 4b 还表现出良好的 ADMET 特征,显示出较高的口服生物利用度、良好的渗透性、适度的分布、较低的血浆蛋白结合率、足够的代谢稳定性、高效的肾清除率和较低的毒性。鉴于幼年激素通过受体相互作用在调节基因表达和发育途径方面的关键作用,化合物 4a 和 4b 显示出作为该蛋白抑制剂的前景。抑制这一过程可以阻碍幼虫的生长和繁殖,为早期蚊虫的杀幼虫剂活性提供了一种很有前景的方法。因此,化合物 4a 和 4b 是进一步优化和开发新型杀幼虫剂的主要候选化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Larvicidal activity, molecular docking, and molecular dynamics studies of 7-(trifluoromethyl)indolizine derivatives against Anopheles arabiensis.

A novel series of 7-(trifluoromethyl)indolizine derivatives (4a-4n) was synthesized using a 1,3-Dipolar cycloaddition reaction. Structure elucidation of the synthesized compounds was done using various spectroscopic techniques. Compounds were assessed for their larvicidal activity against Anopheles arabiensis. Exposure of Anopheles arabiensis larvae to a series of 7-(trifluoromethyl)indolizine at 4 µg/mL for 24 and 48 h resulted in moderate to high larval mortality rates. Among them, compounds 4b, 4a, 4g, and 4m exhibited the most promising larvicidal activities, with mortality rates of 94.4%, 93.3%, 80.00%, and 85.6%, respectively, compared to controls, Acetone and Temephos. The structural activity relationship analysis of the evaluated compounds revealed that substitution with halogens or electron-withdrawing groups (CN, F, Cl, Br) at the para position of the benzoyl group is crucial for achieving promising larvicidal activity. Molecular docking studies were carried out involving six potential larvicidal target proteins to predict how the tested compounds might work. Compounds 4a and 4b showed strong binding to the Mosquito Juvenile Hormone-Binding Protein (5V13). Molecular dynamics (MD) simulations confirmed the stability of the protein-ligand complexes over the simulation period, reinforcing the reliability of the docking results. Compounds 4a and 4b also exhibited favourable ADMET profiles, showing high oral bioavailability, good permeability, moderate distribution, low plasma protein binding, sufficient metabolic stability, efficient renal clearance and low toxicity. Given the crucial role of Juvenile Hormone in regulating gene expression and developmental pathways through receptor interactions, compounds 4a and 4b show promise as inhibitors of this protein. Inhibiting this process could hinder larval growth and reproduction, presenting a promising approach for early-stage mosquito larvicidal activity. Therefore, compounds 4a and 4b represent lead candidates for further optimization and the development of new larvicidal agents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信