Bakul Akter, Md Sohorab Uddin, Mohammad Rashedul Islam, Kutub Uddin Ahamed, Most Nazmin Aktar, Mohammed Kamrul Hossain, Ahmad Mohammad Salamatullah, Mouhammed Bourhia
{"title":"通过分子对接、ADMET 和毒理学研究从自然资源中鉴定新型抗糖尿病化合物的计算药物设计方法。","authors":"Bakul Akter, Md Sohorab Uddin, Mohammad Rashedul Islam, Kutub Uddin Ahamed, Most Nazmin Aktar, Mohammed Kamrul Hossain, Ahmad Mohammad Salamatullah, Mouhammed Bourhia","doi":"10.1007/s12013-024-01540-1","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2DM) is usually depicted by relative insulin deficiency, raised blood glucose levels, and the predominant risk factor, insulin resistance. Hence, the development of insulin sensitizer drugs targeting PPAR-γ receptors has expanded enormous interest as an attractive choice for T2DM treatment. Thiazolidinediones (TZD) enhance insulin sensitivity either by directly functioning on gene transcription of the PPARγ receptor related to glucose homeostasis or by systemic sensitization of insulin and, therefore, improved hyperglycemia in a wide range of patients. However, severe complications and adverse effects of TZDs necessitate the development of an efficacious and reliable insulin sensitizer from alternative resources. On the contrary, Nature is a rich source of anticipated effective and safer medicine; more than fifty percent of drugs on the market are developed from natural products. Hence, searching for a new PPAR-γ agonist from bioactive secondary compounds of medicinal plants along with greater efficacy and safety is a recognized and consistent tactic for developing novel antidiabetic agents. Pulicaria jaubertii is a fragrant perennial aromatic plant with anti-inflammatory, antidiabetic, antimicrobial, antimalarial, and insecticidal properties. The current study was designed to use a computer-aided drug design to explore the best antidiabetic compounds from P. jaubertii. Herein, the molecular docking study of 80 investigated ligands against the PPAR-γ receptor identifies the highest docking score for five ligands ranging from -8.9 kcal/mol to 8.0 kcal/mol, which is also more significant than the standard drug pioglitazone (-7.7 kcal/mol) determined by the PyRx 8.0 virtual screening software. GLN286, CYS285, SER289, TYR473, MET364, ARG288, ILE341, and LEU333 residues are found to be significant contributors to the non-bonded interaction between ligands and receptors. Molecular electrostatic potential (MEP), DFT, molecular orbital (MO), ADMET, and toxicological analyses were performed on the selected five high-scored ligands of P. jaubertii. Results documented that all investigated ligands, especially L4, show considerably excellent profiles in molecular docking, MEP, DFT, MO, ADMET, and toxicological predictions, suggesting our drug-designing approaches may contribute to the development of a novel antidiabetic drug for the treatment of T2DM from natural resources.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Drug Design Approaches for the Identification of Novel Antidiabetic Compounds from Natural Resources through Molecular Docking, ADMET, and Toxicological Studies.\",\"authors\":\"Bakul Akter, Md Sohorab Uddin, Mohammad Rashedul Islam, Kutub Uddin Ahamed, Most Nazmin Aktar, Mohammed Kamrul Hossain, Ahmad Mohammad Salamatullah, Mouhammed Bourhia\",\"doi\":\"10.1007/s12013-024-01540-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type 2 diabetes mellitus (T2DM) is usually depicted by relative insulin deficiency, raised blood glucose levels, and the predominant risk factor, insulin resistance. Hence, the development of insulin sensitizer drugs targeting PPAR-γ receptors has expanded enormous interest as an attractive choice for T2DM treatment. Thiazolidinediones (TZD) enhance insulin sensitivity either by directly functioning on gene transcription of the PPARγ receptor related to glucose homeostasis or by systemic sensitization of insulin and, therefore, improved hyperglycemia in a wide range of patients. However, severe complications and adverse effects of TZDs necessitate the development of an efficacious and reliable insulin sensitizer from alternative resources. On the contrary, Nature is a rich source of anticipated effective and safer medicine; more than fifty percent of drugs on the market are developed from natural products. Hence, searching for a new PPAR-γ agonist from bioactive secondary compounds of medicinal plants along with greater efficacy and safety is a recognized and consistent tactic for developing novel antidiabetic agents. Pulicaria jaubertii is a fragrant perennial aromatic plant with anti-inflammatory, antidiabetic, antimicrobial, antimalarial, and insecticidal properties. The current study was designed to use a computer-aided drug design to explore the best antidiabetic compounds from P. jaubertii. Herein, the molecular docking study of 80 investigated ligands against the PPAR-γ receptor identifies the highest docking score for five ligands ranging from -8.9 kcal/mol to 8.0 kcal/mol, which is also more significant than the standard drug pioglitazone (-7.7 kcal/mol) determined by the PyRx 8.0 virtual screening software. GLN286, CYS285, SER289, TYR473, MET364, ARG288, ILE341, and LEU333 residues are found to be significant contributors to the non-bonded interaction between ligands and receptors. Molecular electrostatic potential (MEP), DFT, molecular orbital (MO), ADMET, and toxicological analyses were performed on the selected five high-scored ligands of P. jaubertii. Results documented that all investigated ligands, especially L4, show considerably excellent profiles in molecular docking, MEP, DFT, MO, ADMET, and toxicological predictions, suggesting our drug-designing approaches may contribute to the development of a novel antidiabetic drug for the treatment of T2DM from natural resources.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01540-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01540-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Computational Drug Design Approaches for the Identification of Novel Antidiabetic Compounds from Natural Resources through Molecular Docking, ADMET, and Toxicological Studies.
Type 2 diabetes mellitus (T2DM) is usually depicted by relative insulin deficiency, raised blood glucose levels, and the predominant risk factor, insulin resistance. Hence, the development of insulin sensitizer drugs targeting PPAR-γ receptors has expanded enormous interest as an attractive choice for T2DM treatment. Thiazolidinediones (TZD) enhance insulin sensitivity either by directly functioning on gene transcription of the PPARγ receptor related to glucose homeostasis or by systemic sensitization of insulin and, therefore, improved hyperglycemia in a wide range of patients. However, severe complications and adverse effects of TZDs necessitate the development of an efficacious and reliable insulin sensitizer from alternative resources. On the contrary, Nature is a rich source of anticipated effective and safer medicine; more than fifty percent of drugs on the market are developed from natural products. Hence, searching for a new PPAR-γ agonist from bioactive secondary compounds of medicinal plants along with greater efficacy and safety is a recognized and consistent tactic for developing novel antidiabetic agents. Pulicaria jaubertii is a fragrant perennial aromatic plant with anti-inflammatory, antidiabetic, antimicrobial, antimalarial, and insecticidal properties. The current study was designed to use a computer-aided drug design to explore the best antidiabetic compounds from P. jaubertii. Herein, the molecular docking study of 80 investigated ligands against the PPAR-γ receptor identifies the highest docking score for five ligands ranging from -8.9 kcal/mol to 8.0 kcal/mol, which is also more significant than the standard drug pioglitazone (-7.7 kcal/mol) determined by the PyRx 8.0 virtual screening software. GLN286, CYS285, SER289, TYR473, MET364, ARG288, ILE341, and LEU333 residues are found to be significant contributors to the non-bonded interaction between ligands and receptors. Molecular electrostatic potential (MEP), DFT, molecular orbital (MO), ADMET, and toxicological analyses were performed on the selected five high-scored ligands of P. jaubertii. Results documented that all investigated ligands, especially L4, show considerably excellent profiles in molecular docking, MEP, DFT, MO, ADMET, and toxicological predictions, suggesting our drug-designing approaches may contribute to the development of a novel antidiabetic drug for the treatment of T2DM from natural resources.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.