{"title":"利用生物代谢物合成金属纳米颗粒:机制与应用。","authors":"Chinmayee Acharya, Sonam Mishra, Sandeep Kumar Chaurasia, Bishnu Kumar Pandey, Ravindra Dhar, Jitendra Kumar Pandey","doi":"10.1007/s10534-024-00642-w","DOIUrl":null,"url":null,"abstract":"<p><p>Bio-metabolites have played a crucial role in the recent green synthesis of nanoparticles, resulting in more versatile, safer, and effective nanoparticles. Various primary and secondary metabolites, such as proteins, carbohydrates, lipids, nucleic acids, enzymes, vitamins, organic acids, alkaloids, flavonoids, and terpenes, have demonstrated strong metal reduction and stabilization properties that can be utilized to synthesize nanomaterials and influence their characters. While physical and chemical methods were previously used to synthesize these nanomaterials, their drawbacks, including high energy consumption, elevated cost, lower yield, and the use of toxic chemicals, have led to a shift towards eco-friendly, rapid, and efficient alternatives. Biomolecules act as reducing agents through deprotonation, nucleophilic reactions, transesterification reactions, ligand binding, and chelation mechanisms, which help sequester metal ions into stable metal nanoparticles (NPs). Engineered NPs have potential applications in various fields due to their optical, electronic, and magnetic properties, offering improved performance compared to bulkier counterparts. NPs can be used in medicine, food and agriculture, chemical catalysts, energy harvesting, electronics, etc. This review provides an overview of the role of primary and secondary metabolites in creating effective nanostructures and their potential applications.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of metallic nanoparticles using biometabolites: mechanisms and applications.\",\"authors\":\"Chinmayee Acharya, Sonam Mishra, Sandeep Kumar Chaurasia, Bishnu Kumar Pandey, Ravindra Dhar, Jitendra Kumar Pandey\",\"doi\":\"10.1007/s10534-024-00642-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bio-metabolites have played a crucial role in the recent green synthesis of nanoparticles, resulting in more versatile, safer, and effective nanoparticles. Various primary and secondary metabolites, such as proteins, carbohydrates, lipids, nucleic acids, enzymes, vitamins, organic acids, alkaloids, flavonoids, and terpenes, have demonstrated strong metal reduction and stabilization properties that can be utilized to synthesize nanomaterials and influence their characters. While physical and chemical methods were previously used to synthesize these nanomaterials, their drawbacks, including high energy consumption, elevated cost, lower yield, and the use of toxic chemicals, have led to a shift towards eco-friendly, rapid, and efficient alternatives. Biomolecules act as reducing agents through deprotonation, nucleophilic reactions, transesterification reactions, ligand binding, and chelation mechanisms, which help sequester metal ions into stable metal nanoparticles (NPs). Engineered NPs have potential applications in various fields due to their optical, electronic, and magnetic properties, offering improved performance compared to bulkier counterparts. NPs can be used in medicine, food and agriculture, chemical catalysts, energy harvesting, electronics, etc. This review provides an overview of the role of primary and secondary metabolites in creating effective nanostructures and their potential applications.</p>\",\"PeriodicalId\":491,\"journal\":{\"name\":\"Biometals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometals\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10534-024-00642-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-024-00642-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synthesis of metallic nanoparticles using biometabolites: mechanisms and applications.
Bio-metabolites have played a crucial role in the recent green synthesis of nanoparticles, resulting in more versatile, safer, and effective nanoparticles. Various primary and secondary metabolites, such as proteins, carbohydrates, lipids, nucleic acids, enzymes, vitamins, organic acids, alkaloids, flavonoids, and terpenes, have demonstrated strong metal reduction and stabilization properties that can be utilized to synthesize nanomaterials and influence their characters. While physical and chemical methods were previously used to synthesize these nanomaterials, their drawbacks, including high energy consumption, elevated cost, lower yield, and the use of toxic chemicals, have led to a shift towards eco-friendly, rapid, and efficient alternatives. Biomolecules act as reducing agents through deprotonation, nucleophilic reactions, transesterification reactions, ligand binding, and chelation mechanisms, which help sequester metal ions into stable metal nanoparticles (NPs). Engineered NPs have potential applications in various fields due to their optical, electronic, and magnetic properties, offering improved performance compared to bulkier counterparts. NPs can be used in medicine, food and agriculture, chemical catalysts, energy harvesting, electronics, etc. This review provides an overview of the role of primary and secondary metabolites in creating effective nanostructures and their potential applications.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.