Florian Brette, Stéphane Célérier, Christine Canaff, Lola Loupias, Michael Paris, Aurélien Habrioux, Florent Boucher, Vincent Mauchamp
{"title":"二维 Ti3C2Tz MXene 中的 XPS 结合能转变在很大程度上超越了直观解释:DFT 模拟和实验的合理性。","authors":"Florian Brette, Stéphane Célérier, Christine Canaff, Lola Loupias, Michael Paris, Aurélien Habrioux, Florent Boucher, Vincent Mauchamp","doi":"10.1002/smtd.202400848","DOIUrl":null,"url":null,"abstract":"<p><p>MXenes are prototypes of surface tunable 2D materials with vast potential for properties tuning. Accurately characterizing their surface functionalization and its role in electronic structure is crucial, X-ray photoelectron spectroscopy (XPS) being among the go-to methods to do so. Despite extensive use, XPS analysis remains however intricate. Focusing on the benchmark MXene Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub>, Density Functional Theory (DFT) calculations of core-level binding energy shifts (BE.s.) are combined with experiments in order to provide a quantitative interpretation of XPS spectra. This approach demonstrates that BE.s. are driven by the complex interplay between chemical, structural, and subtle electronic structure effects preventing analysis from intuitive arguments or comparison with reference materials. In particular, it is shown that O terminations induce the largest BE.s. at Ti 2p levels despite lower electronegativity than F. Additionally, F 1s levels show weak sensitivity to the F local environment, explaining the single contribution in the spectrum, whereas O 1s states are significantly affected by the local surface chemistry. Finally, clear indicators of surface group vacancies are given at Ti 2p and O 1s levels. These results demonstrate the combination of calculations with experiments as a method of the highest value for MXenes XPS spectra analysis, providing guidelines for otherwise complex interpretations.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400848"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XPS Binding Energy Shifts in 2D Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub> MXene go largely Beyond Intuitive Explanations: Rationalization from DFT Simulations and Experiments.\",\"authors\":\"Florian Brette, Stéphane Célérier, Christine Canaff, Lola Loupias, Michael Paris, Aurélien Habrioux, Florent Boucher, Vincent Mauchamp\",\"doi\":\"10.1002/smtd.202400848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MXenes are prototypes of surface tunable 2D materials with vast potential for properties tuning. Accurately characterizing their surface functionalization and its role in electronic structure is crucial, X-ray photoelectron spectroscopy (XPS) being among the go-to methods to do so. Despite extensive use, XPS analysis remains however intricate. Focusing on the benchmark MXene Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub>, Density Functional Theory (DFT) calculations of core-level binding energy shifts (BE.s.) are combined with experiments in order to provide a quantitative interpretation of XPS spectra. This approach demonstrates that BE.s. are driven by the complex interplay between chemical, structural, and subtle electronic structure effects preventing analysis from intuitive arguments or comparison with reference materials. In particular, it is shown that O terminations induce the largest BE.s. at Ti 2p levels despite lower electronegativity than F. Additionally, F 1s levels show weak sensitivity to the F local environment, explaining the single contribution in the spectrum, whereas O 1s states are significantly affected by the local surface chemistry. Finally, clear indicators of surface group vacancies are given at Ti 2p and O 1s levels. These results demonstrate the combination of calculations with experiments as a method of the highest value for MXenes XPS spectra analysis, providing guidelines for otherwise complex interpretations.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2400848\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202400848\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400848","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
MXenes 是表面可调二维材料的原型,具有巨大的性能调整潜力。准确表征其表面官能化及其在电子结构中的作用至关重要,而 X 射线光电子能谱(XPS)是表征的常用方法之一。尽管 XPS 被广泛使用,但其分析仍然错综复杂。本研究以基准 MXene Ti3C2Tz 为重点,将核级结合能偏移(BE.s.)的密度泛函理论(DFT)计算与实验相结合,以便对 XPS 光谱进行定量解释。这种方法表明,BE.s.是由化学、结构和微妙的电子结构效应之间复杂的相互作用驱动的,因此无法通过直观论证或与参考材料进行比较来进行分析。此外,F 1s 电平对 F 局部环境的敏感性较弱,这解释了光谱中的单一贡献,而 O 1s 态则受到局部表面化学的显著影响。最后,Ti 2p 和 O 1s 水平给出了表面基团空位的明确指示。这些结果表明,计算与实验相结合是 MXenes XPS 光谱分析的最高价值方法,为其他复杂的解释提供了指导。
XPS Binding Energy Shifts in 2D Ti3C2Tz MXene go largely Beyond Intuitive Explanations: Rationalization from DFT Simulations and Experiments.
MXenes are prototypes of surface tunable 2D materials with vast potential for properties tuning. Accurately characterizing their surface functionalization and its role in electronic structure is crucial, X-ray photoelectron spectroscopy (XPS) being among the go-to methods to do so. Despite extensive use, XPS analysis remains however intricate. Focusing on the benchmark MXene Ti3C2Tz, Density Functional Theory (DFT) calculations of core-level binding energy shifts (BE.s.) are combined with experiments in order to provide a quantitative interpretation of XPS spectra. This approach demonstrates that BE.s. are driven by the complex interplay between chemical, structural, and subtle electronic structure effects preventing analysis from intuitive arguments or comparison with reference materials. In particular, it is shown that O terminations induce the largest BE.s. at Ti 2p levels despite lower electronegativity than F. Additionally, F 1s levels show weak sensitivity to the F local environment, explaining the single contribution in the spectrum, whereas O 1s states are significantly affected by the local surface chemistry. Finally, clear indicators of surface group vacancies are given at Ti 2p and O 1s levels. These results demonstrate the combination of calculations with experiments as a method of the highest value for MXenes XPS spectra analysis, providing guidelines for otherwise complex interpretations.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.