Tao Yin, Yang Luo, Ripsa Rani Nayak, Riyang Shu, Zhipeng Tian, Chao Wang, Ying Chen, Navneet Kumar Gupta
{"title":"使用镍支撑的蜂窝结构生物炭和磷钼酸对愈创木酚进行高效和选择性加氢脱氧。","authors":"Tao Yin, Yang Luo, Ripsa Rani Nayak, Riyang Shu, Zhipeng Tian, Chao Wang, Ying Chen, Navneet Kumar Gupta","doi":"10.1002/asia.202400999","DOIUrl":null,"url":null,"abstract":"<p><p>The sustainable development of energy has always been a concern. Upgrading biomass catalysis into hydrocarbon liquid fuels is one of the effective methods. In order to upgrade biomass derivative guaiacol by Hydrodeoxygenation (HDO) catalysis, this article report a three-dimensional honeycomb structure biochar loaded with Ni nanoparticles and phosphomolybdic acid demonstrating excellent catalytic performance in a short period of time. This is due to the porous structure of biochar, which allows Ni metal nanoparticles to be highly uniformly dispersed on the support, which enhances the catalytic hydrogenation of guaiacol in terms of both rate and efficiency. Furthermore, it was observed that the added phosphomolybdic acid dissolved within the temperature range of 78-90 °C, functioning as a homogeneous catalyst in the process. This proves advantageous, as the phosphomolybdic acid becomes accessible at any location within the porous Ni/C catalyst. The detailed characterization data revealed that the carbon support prepared in this study has a high specific surface area of up to 1375.61 m<sup>2</sup>/g. Additionally, the phosphomolybdic acid exhibited rich acidity, with Brønsted and Lewis acid contents of 2.55 μmol/g and 21.45 μmol/g, respectively. Reaction data demonstrated that at 240 °C for 180 min, 100 % conversion and 97.9 % cyclohexane selectivity were achieved. This study introduces a bifunctional catalyst with an unique catalyst's structure, facilitating a heterogeneous-homogeneous catalytic reaction and delivering an efficient catalytic effect.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202400999"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Efficient and Selective Hydrodeoxygenation of Guaiacol Using Ni-Supported Honeycomb-Structured Biochar and Phosphomolybdic Acid.\",\"authors\":\"Tao Yin, Yang Luo, Ripsa Rani Nayak, Riyang Shu, Zhipeng Tian, Chao Wang, Ying Chen, Navneet Kumar Gupta\",\"doi\":\"10.1002/asia.202400999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sustainable development of energy has always been a concern. Upgrading biomass catalysis into hydrocarbon liquid fuels is one of the effective methods. In order to upgrade biomass derivative guaiacol by Hydrodeoxygenation (HDO) catalysis, this article report a three-dimensional honeycomb structure biochar loaded with Ni nanoparticles and phosphomolybdic acid demonstrating excellent catalytic performance in a short period of time. This is due to the porous structure of biochar, which allows Ni metal nanoparticles to be highly uniformly dispersed on the support, which enhances the catalytic hydrogenation of guaiacol in terms of both rate and efficiency. Furthermore, it was observed that the added phosphomolybdic acid dissolved within the temperature range of 78-90 °C, functioning as a homogeneous catalyst in the process. This proves advantageous, as the phosphomolybdic acid becomes accessible at any location within the porous Ni/C catalyst. The detailed characterization data revealed that the carbon support prepared in this study has a high specific surface area of up to 1375.61 m<sup>2</sup>/g. Additionally, the phosphomolybdic acid exhibited rich acidity, with Brønsted and Lewis acid contents of 2.55 μmol/g and 21.45 μmol/g, respectively. Reaction data demonstrated that at 240 °C for 180 min, 100 % conversion and 97.9 % cyclohexane selectivity were achieved. This study introduces a bifunctional catalyst with an unique catalyst's structure, facilitating a heterogeneous-homogeneous catalytic reaction and delivering an efficient catalytic effect.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\" \",\"pages\":\"e202400999\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.202400999\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202400999","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Highly Efficient and Selective Hydrodeoxygenation of Guaiacol Using Ni-Supported Honeycomb-Structured Biochar and Phosphomolybdic Acid.
The sustainable development of energy has always been a concern. Upgrading biomass catalysis into hydrocarbon liquid fuels is one of the effective methods. In order to upgrade biomass derivative guaiacol by Hydrodeoxygenation (HDO) catalysis, this article report a three-dimensional honeycomb structure biochar loaded with Ni nanoparticles and phosphomolybdic acid demonstrating excellent catalytic performance in a short period of time. This is due to the porous structure of biochar, which allows Ni metal nanoparticles to be highly uniformly dispersed on the support, which enhances the catalytic hydrogenation of guaiacol in terms of both rate and efficiency. Furthermore, it was observed that the added phosphomolybdic acid dissolved within the temperature range of 78-90 °C, functioning as a homogeneous catalyst in the process. This proves advantageous, as the phosphomolybdic acid becomes accessible at any location within the porous Ni/C catalyst. The detailed characterization data revealed that the carbon support prepared in this study has a high specific surface area of up to 1375.61 m2/g. Additionally, the phosphomolybdic acid exhibited rich acidity, with Brønsted and Lewis acid contents of 2.55 μmol/g and 21.45 μmol/g, respectively. Reaction data demonstrated that at 240 °C for 180 min, 100 % conversion and 97.9 % cyclohexane selectivity were achieved. This study introduces a bifunctional catalyst with an unique catalyst's structure, facilitating a heterogeneous-homogeneous catalytic reaction and delivering an efficient catalytic effect.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).