在银中空纤维气体扩散电极上设计界面分子相互作用,以实现二氧化碳到一氧化碳的高效转化。

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yizhu Kuang, Guoliang Chen, Dimuthu Herath Mudiyanselage, Hesamoddin Rabiee, Beibei Ma, Fatereh Dorosti, Ashok Kumar Nanjundan, Zhonghua Zhu, Hao Wang, Lei Ge
{"title":"在银中空纤维气体扩散电极上设计界面分子相互作用,以实现二氧化碳到一氧化碳的高效转化。","authors":"Yizhu Kuang, Guoliang Chen, Dimuthu Herath Mudiyanselage, Hesamoddin Rabiee, Beibei Ma, Fatereh Dorosti, Ashok Kumar Nanjundan, Zhonghua Zhu, Hao Wang, Lei Ge","doi":"10.1002/chem.202403251","DOIUrl":null,"url":null,"abstract":"<p><p>The electrochemical CO2 reduction reaction (CO2RR) occurs at the nanoscale interface of the electrode-electrolyte. Therefore, tailoring the interfacial properties in the interface microenvironment provides a powerful strategy to optimise the activity and selectivity of electrocatalysts towards the desired products. Here, the microenvironment at the electrode-electrolyte interface of the flow-through Ag-based hollow fibre gas diffusion electrode (Ag HFGDE) is modulated by introducing surfactant cetyltrimethylammonium bromide (CTAB) as the electrolyte additive. The porous hollow fibre configuration and gas penetration mode facilitate the CO2 mass transfer and the formation of the triple-phase interface. Through the ordered arrangement of hydrophobic long-alkyl chains, CTAB molecules at the electrode/electrolyte interface promoted CO2 penetration to active sites and repelled water to reduce the activity of competitive hydrogen evolution reaction (HER). By applying CTAB-containing catholyte, Ag HFGDE achieved a high CO Faradaic efficiency (FE) of over 95 % in a wide potential range and double the partial current density of CO. The enhancement of CO selectivity and suppression of hydrogen was attributed to the improvement of charge transfer and the CO2/H2O ratio enhancement. These findings highlight the importance of adjusting the local microenvironment to enhance the reaction kinetics and product selectivity in the electrochemical CO2 reduction reaction CO2RR.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering interfacial molecular interactions on Ag Hollow fibre gas diffusion electrodes for high efficiency in CO2 conversion to CO.\",\"authors\":\"Yizhu Kuang, Guoliang Chen, Dimuthu Herath Mudiyanselage, Hesamoddin Rabiee, Beibei Ma, Fatereh Dorosti, Ashok Kumar Nanjundan, Zhonghua Zhu, Hao Wang, Lei Ge\",\"doi\":\"10.1002/chem.202403251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electrochemical CO2 reduction reaction (CO2RR) occurs at the nanoscale interface of the electrode-electrolyte. Therefore, tailoring the interfacial properties in the interface microenvironment provides a powerful strategy to optimise the activity and selectivity of electrocatalysts towards the desired products. Here, the microenvironment at the electrode-electrolyte interface of the flow-through Ag-based hollow fibre gas diffusion electrode (Ag HFGDE) is modulated by introducing surfactant cetyltrimethylammonium bromide (CTAB) as the electrolyte additive. The porous hollow fibre configuration and gas penetration mode facilitate the CO2 mass transfer and the formation of the triple-phase interface. Through the ordered arrangement of hydrophobic long-alkyl chains, CTAB molecules at the electrode/electrolyte interface promoted CO2 penetration to active sites and repelled water to reduce the activity of competitive hydrogen evolution reaction (HER). By applying CTAB-containing catholyte, Ag HFGDE achieved a high CO Faradaic efficiency (FE) of over 95 % in a wide potential range and double the partial current density of CO. The enhancement of CO selectivity and suppression of hydrogen was attributed to the improvement of charge transfer and the CO2/H2O ratio enhancement. These findings highlight the importance of adjusting the local microenvironment to enhance the reaction kinetics and product selectivity in the electrochemical CO2 reduction reaction CO2RR.</p>\",\"PeriodicalId\":144,\"journal\":{\"name\":\"Chemistry - A European Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - A European Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/chem.202403251\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202403251","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学二氧化碳还原反应(CO2RR)发生在电极-电解质的纳米级界面上。因此,调整界面微环境中的界面特性为优化电催化剂对所需产物的活性和选择性提供了有力的策略。在这里,通过引入表面活性剂十六烷基三甲基溴化铵(CTAB)作为电解质添加剂,调节了流动式银基中空纤维气体扩散电极(Ag HFGDE)的电极-电解质界面微环境。多孔中空纤维结构和气体渗透模式促进了二氧化碳的传质和三相界面的形成。通过疏水性长烷基链的有序排列,CTAB 分子在电极/电解质界面上促进了二氧化碳向活性位点的渗透,并排斥水以降低竞争性氢进化反应(HER)的活性。通过使用含 CTAB 的阴极溶液,Ag HFGDE 在宽电位范围内实现了超过 95% 的高 CO 法拉第效率 (FE),并将 CO 的部分电流密度提高了一倍。一氧化碳选择性的提高和对氢的抑制归因于电荷转移的改善和 CO2/H2O 比率的提高。这些发现凸显了调整局部微环境对提高 CO2 还原反应 CO2RR 中的反应动力学和产物选择性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering interfacial molecular interactions on Ag Hollow fibre gas diffusion electrodes for high efficiency in CO2 conversion to CO.

The electrochemical CO2 reduction reaction (CO2RR) occurs at the nanoscale interface of the electrode-electrolyte. Therefore, tailoring the interfacial properties in the interface microenvironment provides a powerful strategy to optimise the activity and selectivity of electrocatalysts towards the desired products. Here, the microenvironment at the electrode-electrolyte interface of the flow-through Ag-based hollow fibre gas diffusion electrode (Ag HFGDE) is modulated by introducing surfactant cetyltrimethylammonium bromide (CTAB) as the electrolyte additive. The porous hollow fibre configuration and gas penetration mode facilitate the CO2 mass transfer and the formation of the triple-phase interface. Through the ordered arrangement of hydrophobic long-alkyl chains, CTAB molecules at the electrode/electrolyte interface promoted CO2 penetration to active sites and repelled water to reduce the activity of competitive hydrogen evolution reaction (HER). By applying CTAB-containing catholyte, Ag HFGDE achieved a high CO Faradaic efficiency (FE) of over 95 % in a wide potential range and double the partial current density of CO. The enhancement of CO selectivity and suppression of hydrogen was attributed to the improvement of charge transfer and the CO2/H2O ratio enhancement. These findings highlight the importance of adjusting the local microenvironment to enhance the reaction kinetics and product selectivity in the electrochemical CO2 reduction reaction CO2RR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry - A European Journal
Chemistry - A European Journal 化学-化学综合
CiteScore
7.90
自引率
4.70%
发文量
1808
审稿时长
1.8 months
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields. Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world. All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times. The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems. Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信