调节孔壁化学性质增强二维共价有机框架异质结的声动力活性,促进氧化性纳米疗法。

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Angewandte Chemie International Edition Pub Date : 2025-01-21 Epub Date: 2024-11-09 DOI:10.1002/anie.202416461
Ruohui Wu, Mengying Hua, Yanjia Lu, Liang Chen, Yu Chen, Zhongqian Hu
{"title":"调节孔壁化学性质增强二维共价有机框架异质结的声动力活性,促进氧化性纳米疗法。","authors":"Ruohui Wu, Mengying Hua, Yanjia Lu, Liang Chen, Yu Chen, Zhongqian Hu","doi":"10.1002/anie.202416461","DOIUrl":null,"url":null,"abstract":"<p><p>Covalent organic frameworks (COFs) have garnered growing interest in the field of biomedicine; however, their application in sonodynamic therapy remains underexplored due to limited understanding of their intrinsic activity and structure-property relationships. Here, we present a pore wall chemistry modulation strategy for empowering sonodynamic activity to two-dimensional (2D) COF heterojunctions through in situ growth of COFs on bismuth oxycarbonate nanosheets (B NSs). Compared to the negligible sonodynamic effects observed in the pristine B NSs, the 2D heterojunction with vinyl-decorated COF pore walls demonstrates a 3.6-fold enhancement in sonocatalytic singlet oxygen generation. This performance also significantly outperforms that of isoreticular COFs functionalized with methoxy or non-substituted groups. Mechanistic studies reveal that the vinyl groups in the B@COF (BC) heterojunction facilitate the separation and transfer of charge carriers while also enhancing the adsorption of oxygen molecules. Furthermore, peroxymonosulfate (PMS) loading into the porous COFs boosts the therapeutic efficacy of antitumor nanotherapy via sonocatalytic dual oxidative species generation. These findings underscore the critical role of pore wall chemistry in modulating the sonocatalytic properties of COFs, and advance the development of COF-based sonosensitizers for pro-oxidative applications.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202416461"},"PeriodicalIF":16.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating Pore Wall Chemistry Empowers Sonodynamic Activity of Two-Dimensional Covalent Organic Framework Heterojunctions for Pro-Oxidative Nanotherapy.\",\"authors\":\"Ruohui Wu, Mengying Hua, Yanjia Lu, Liang Chen, Yu Chen, Zhongqian Hu\",\"doi\":\"10.1002/anie.202416461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Covalent organic frameworks (COFs) have garnered growing interest in the field of biomedicine; however, their application in sonodynamic therapy remains underexplored due to limited understanding of their intrinsic activity and structure-property relationships. Here, we present a pore wall chemistry modulation strategy for empowering sonodynamic activity to two-dimensional (2D) COF heterojunctions through in situ growth of COFs on bismuth oxycarbonate nanosheets (B NSs). Compared to the negligible sonodynamic effects observed in the pristine B NSs, the 2D heterojunction with vinyl-decorated COF pore walls demonstrates a 3.6-fold enhancement in sonocatalytic singlet oxygen generation. This performance also significantly outperforms that of isoreticular COFs functionalized with methoxy or non-substituted groups. Mechanistic studies reveal that the vinyl groups in the B@COF (BC) heterojunction facilitate the separation and transfer of charge carriers while also enhancing the adsorption of oxygen molecules. Furthermore, peroxymonosulfate (PMS) loading into the porous COFs boosts the therapeutic efficacy of antitumor nanotherapy via sonocatalytic dual oxidative species generation. These findings underscore the critical role of pore wall chemistry in modulating the sonocatalytic properties of COFs, and advance the development of COF-based sonosensitizers for pro-oxidative applications.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\" \",\"pages\":\"e202416461\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202416461\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416461","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

共价有机框架(COFs)在生物医学领域引起了越来越多的兴趣;然而,由于对其内在活性和结构-性能关系的了解有限,它们在声动力疗法中的应用仍未得到充分探索。在这里,我们提出了一种孔壁化学调控策略,通过在氧碳酸铋纳米片(B NSs)上原位生长 COF,赋予二维(2D)COF 异质结以声动力活性。与原始 B NSs 中观察到的可忽略不计的声动力学效应相比,带有乙烯基装饰 COF 孔壁的二维异质结在声催化单线态氧生成方面提高了 3.6 倍。这一性能也明显优于用甲氧基或非取代基团官能化的等径 COF。机理研究表明,BC 异质结中的乙烯基促进了电荷载流子的分离和转移,同时也增强了对氧分子的吸附。此外,在多孔 COF 中加入过氧单硫酸盐(PMS)可通过声催化双重氧化物种的生成提高抗肿瘤纳米疗法的疗效。这些发现强调了孔壁化学在调节 COFs 声催化特性中的关键作用,并推动了基于 COFs 的声敏化剂在促氧化应用领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulating Pore Wall Chemistry Empowers Sonodynamic Activity of Two-Dimensional Covalent Organic Framework Heterojunctions for Pro-Oxidative Nanotherapy.

Covalent organic frameworks (COFs) have garnered growing interest in the field of biomedicine; however, their application in sonodynamic therapy remains underexplored due to limited understanding of their intrinsic activity and structure-property relationships. Here, we present a pore wall chemistry modulation strategy for empowering sonodynamic activity to two-dimensional (2D) COF heterojunctions through in situ growth of COFs on bismuth oxycarbonate nanosheets (B NSs). Compared to the negligible sonodynamic effects observed in the pristine B NSs, the 2D heterojunction with vinyl-decorated COF pore walls demonstrates a 3.6-fold enhancement in sonocatalytic singlet oxygen generation. This performance also significantly outperforms that of isoreticular COFs functionalized with methoxy or non-substituted groups. Mechanistic studies reveal that the vinyl groups in the B@COF (BC) heterojunction facilitate the separation and transfer of charge carriers while also enhancing the adsorption of oxygen molecules. Furthermore, peroxymonosulfate (PMS) loading into the porous COFs boosts the therapeutic efficacy of antitumor nanotherapy via sonocatalytic dual oxidative species generation. These findings underscore the critical role of pore wall chemistry in modulating the sonocatalytic properties of COFs, and advance the development of COF-based sonosensitizers for pro-oxidative applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信