Yongseok Kim, Katherine Kokkinias, Anice Sabag-Daigle, Ikaia Leleiwi, Mikayla Borton, Michael Shaffer, Maryam Baniasad, Rebecca Daly, Brian M M Ahmer, Kelly C Wrighton, Vicki H Wysocki
{"title":"时间分辨多组学图解沙门氏菌感染过程中宿主与肠道微生物的相互作用","authors":"Yongseok Kim, Katherine Kokkinias, Anice Sabag-Daigle, Ikaia Leleiwi, Mikayla Borton, Michael Shaffer, Maryam Baniasad, Rebecca Daly, Brian M M Ahmer, Kelly C Wrighton, Vicki H Wysocki","doi":"10.1021/acs.jproteome.4c00172","DOIUrl":null,"url":null,"abstract":"<p><p><i>Salmonella</i> infection, also known as <i>Salmonellosis</i>, is one of the most common food-borne illnesses. <i>Salmonella</i> infection can trigger host defensive functions, including an inflammatory response. The provoked-host inflammatory response has a significant impact on the bacterial population in the gut. In addition, <i>Salmonella</i> competes with other gut microorganisms for survival and growth within the host. Compositional and functional alterations in gut bacteria occur because of the host immunological response and competition between <i>Salmonella</i> and the gut microbiome. Host variation and the inherent complexity of the gut microbial community make understanding commensal and pathogen interactions particularly difficult during a <i>Salmonella</i> infection. Here, we present metabolomics and lipidomics analyses along with the 16S rRNA sequence analysis, revealing a comprehensive view of the metabolic interactions between the host and gut microbiota during <i>Salmonella</i> infection in a CBA/J mouse model. We found that different metabolic pathways were altered over the four investigated time points of <i>Salmonella</i> infection (days -2, +2, +6, and +13). Furthermore, metatranscriptomics analysis integrated with metabolomics and lipidomics analysis facilitated an understanding of the heterogeneous response of mice, depending on the degree of dysbiosis.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-Resolved Multiomics Illustrates Host and Gut Microbe Interactions during <i>Salmonella</i> Infection.\",\"authors\":\"Yongseok Kim, Katherine Kokkinias, Anice Sabag-Daigle, Ikaia Leleiwi, Mikayla Borton, Michael Shaffer, Maryam Baniasad, Rebecca Daly, Brian M M Ahmer, Kelly C Wrighton, Vicki H Wysocki\",\"doi\":\"10.1021/acs.jproteome.4c00172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Salmonella</i> infection, also known as <i>Salmonellosis</i>, is one of the most common food-borne illnesses. <i>Salmonella</i> infection can trigger host defensive functions, including an inflammatory response. The provoked-host inflammatory response has a significant impact on the bacterial population in the gut. In addition, <i>Salmonella</i> competes with other gut microorganisms for survival and growth within the host. Compositional and functional alterations in gut bacteria occur because of the host immunological response and competition between <i>Salmonella</i> and the gut microbiome. Host variation and the inherent complexity of the gut microbial community make understanding commensal and pathogen interactions particularly difficult during a <i>Salmonella</i> infection. Here, we present metabolomics and lipidomics analyses along with the 16S rRNA sequence analysis, revealing a comprehensive view of the metabolic interactions between the host and gut microbiota during <i>Salmonella</i> infection in a CBA/J mouse model. We found that different metabolic pathways were altered over the four investigated time points of <i>Salmonella</i> infection (days -2, +2, +6, and +13). Furthermore, metatranscriptomics analysis integrated with metabolomics and lipidomics analysis facilitated an understanding of the heterogeneous response of mice, depending on the degree of dysbiosis.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00172\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00172","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Time-Resolved Multiomics Illustrates Host and Gut Microbe Interactions during Salmonella Infection.
Salmonella infection, also known as Salmonellosis, is one of the most common food-borne illnesses. Salmonella infection can trigger host defensive functions, including an inflammatory response. The provoked-host inflammatory response has a significant impact on the bacterial population in the gut. In addition, Salmonella competes with other gut microorganisms for survival and growth within the host. Compositional and functional alterations in gut bacteria occur because of the host immunological response and competition between Salmonella and the gut microbiome. Host variation and the inherent complexity of the gut microbial community make understanding commensal and pathogen interactions particularly difficult during a Salmonella infection. Here, we present metabolomics and lipidomics analyses along with the 16S rRNA sequence analysis, revealing a comprehensive view of the metabolic interactions between the host and gut microbiota during Salmonella infection in a CBA/J mouse model. We found that different metabolic pathways were altered over the four investigated time points of Salmonella infection (days -2, +2, +6, and +13). Furthermore, metatranscriptomics analysis integrated with metabolomics and lipidomics analysis facilitated an understanding of the heterogeneous response of mice, depending on the degree of dysbiosis.