Chythra J N, Olgun Guvench, Alexander D MacKerell, Takumi Yamaguchi, Sairam S Mallajosyula
{"title":"改进六糖单糖的 Drude 可极化力场:更精确地捕捉环状构象动力学","authors":"Chythra J N, Olgun Guvench, Alexander D MacKerell, Takumi Yamaguchi, Sairam S Mallajosyula","doi":"10.1021/acs.jctc.4c00656","DOIUrl":null,"url":null,"abstract":"<p><p>We present a revised version of the Drude polarizable carbohydrate force field (FF), focusing on refining the ring and exocyclic torsional parameters for hexopyranose monosaccharides. This refinement addresses the previously observed discrepancies between calculated and experimental NMR <sup>3</sup><i>J</i> coupling values, particularly in describing ring dynamics and exocyclic rotamer populations within major hexose monosaccharides and their anomers. Specifically, α-MAN, β-MAN, α-GLC, β-GLC, α-GAL, β-GAL, α-ALT, β-ALT, α-IDO, and β-IDO were targeted for optimization. The optimization process involved potential energy scans (PES) of the ring and exocyclic dihedral angles computed using quantum mechanical (QM) methods. The target data for the reoptimization included PES of the inner ring dihedrals (C1-C2-C3-C4, C2-C3-C4-C5, C5-O5-C1-C2, C4-C5-O5-C1, O5-C1-C2-C3, C3-C4-C5-O5) and the exocyclic torsions, other than the pseudo ring dihedrals (O1-C1-O5-C5, O2-C2-C1-O5, and O4-C4-C5-O5) and hydroxyl torsions used in the previous parametrization efforts. These parameters, in conjunction with previously developed Drude parameters for hexopyranose monosaccharides, were validated against experimental observations, including NMR data and conformational energetics, in aqueous environments. The resulting polarizable model is shown to be in good agreement with a range of QM data, experimental NMR data, and conformational energetics of monosaccharides in aqueous solutions. This offers a significant improvement of the Drude carbohydrate force field, wherein the refinement enhances the accuracy of accessing the conformational dynamics of carbohydrates in biomolecular simulations.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495998/pdf/","citationCount":"0","resultStr":"{\"title\":\"Refinement of the Drude Polarizable Force Field for Hexose Monosaccharides: Capturing Ring Conformational Dynamics with Enhanced Accuracy.\",\"authors\":\"Chythra J N, Olgun Guvench, Alexander D MacKerell, Takumi Yamaguchi, Sairam S Mallajosyula\",\"doi\":\"10.1021/acs.jctc.4c00656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a revised version of the Drude polarizable carbohydrate force field (FF), focusing on refining the ring and exocyclic torsional parameters for hexopyranose monosaccharides. This refinement addresses the previously observed discrepancies between calculated and experimental NMR <sup>3</sup><i>J</i> coupling values, particularly in describing ring dynamics and exocyclic rotamer populations within major hexose monosaccharides and their anomers. Specifically, α-MAN, β-MAN, α-GLC, β-GLC, α-GAL, β-GAL, α-ALT, β-ALT, α-IDO, and β-IDO were targeted for optimization. The optimization process involved potential energy scans (PES) of the ring and exocyclic dihedral angles computed using quantum mechanical (QM) methods. The target data for the reoptimization included PES of the inner ring dihedrals (C1-C2-C3-C4, C2-C3-C4-C5, C5-O5-C1-C2, C4-C5-O5-C1, O5-C1-C2-C3, C3-C4-C5-O5) and the exocyclic torsions, other than the pseudo ring dihedrals (O1-C1-O5-C5, O2-C2-C1-O5, and O4-C4-C5-O5) and hydroxyl torsions used in the previous parametrization efforts. These parameters, in conjunction with previously developed Drude parameters for hexopyranose monosaccharides, were validated against experimental observations, including NMR data and conformational energetics, in aqueous environments. The resulting polarizable model is shown to be in good agreement with a range of QM data, experimental NMR data, and conformational energetics of monosaccharides in aqueous solutions. This offers a significant improvement of the Drude carbohydrate force field, wherein the refinement enhances the accuracy of accessing the conformational dynamics of carbohydrates in biomolecular simulations.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495998/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c00656\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00656","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Refinement of the Drude Polarizable Force Field for Hexose Monosaccharides: Capturing Ring Conformational Dynamics with Enhanced Accuracy.
We present a revised version of the Drude polarizable carbohydrate force field (FF), focusing on refining the ring and exocyclic torsional parameters for hexopyranose monosaccharides. This refinement addresses the previously observed discrepancies between calculated and experimental NMR 3J coupling values, particularly in describing ring dynamics and exocyclic rotamer populations within major hexose monosaccharides and their anomers. Specifically, α-MAN, β-MAN, α-GLC, β-GLC, α-GAL, β-GAL, α-ALT, β-ALT, α-IDO, and β-IDO were targeted for optimization. The optimization process involved potential energy scans (PES) of the ring and exocyclic dihedral angles computed using quantum mechanical (QM) methods. The target data for the reoptimization included PES of the inner ring dihedrals (C1-C2-C3-C4, C2-C3-C4-C5, C5-O5-C1-C2, C4-C5-O5-C1, O5-C1-C2-C3, C3-C4-C5-O5) and the exocyclic torsions, other than the pseudo ring dihedrals (O1-C1-O5-C5, O2-C2-C1-O5, and O4-C4-C5-O5) and hydroxyl torsions used in the previous parametrization efforts. These parameters, in conjunction with previously developed Drude parameters for hexopyranose monosaccharides, were validated against experimental observations, including NMR data and conformational energetics, in aqueous environments. The resulting polarizable model is shown to be in good agreement with a range of QM data, experimental NMR data, and conformational energetics of monosaccharides in aqueous solutions. This offers a significant improvement of the Drude carbohydrate force field, wherein the refinement enhances the accuracy of accessing the conformational dynamics of carbohydrates in biomolecular simulations.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.