揭示元素化学位移的起源以及原子氢在表面乌尔曼耦合系统中的作用。

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-10-22 Epub Date: 2024-10-09 DOI:10.1021/acsnano.4c09375
Dong Han, Honghe Ding, Juanjuan Xiong, Tianchen Qin, Xingwang Cheng, Jun Hu, Qian Xu, Junfa Zhu
{"title":"揭示元素化学位移的起源以及原子氢在表面乌尔曼耦合系统中的作用。","authors":"Dong Han, Honghe Ding, Juanjuan Xiong, Tianchen Qin, Xingwang Cheng, Jun Hu, Qian Xu, Junfa Zhu","doi":"10.1021/acsnano.4c09375","DOIUrl":null,"url":null,"abstract":"<p><p>The Ullmann coupling of aryl halides is a powerful method in the on-surface synthesis of functional materials. Understanding its basic aspects and influencing factors can aid in the use of this tool for the fabrication of intriguing structures. In this study, we unveil (1) the origin of the shift in the elemental binding energy (BE) and (2) the functions of atomic hydrogen (AH) in a typical Ullmann coupling system using combined spectroscopy and microscopy techniques. During debromination of the aryl halide precursor, the work function (WF) alteration is correlated with the surface Br amount. The WF change instead of C-Ag formation is proposed to play a dominant role in the shift of the molecular C 1s BE. AH dosing onto organometallic chains leads to chain decomposition and surface Br removal. In contrast, AH dosing onto covalent poly(<i>para-</i>phenylene) (PPP) chains results in superhydrogenation in addition to Br removal. The C 1s BE shift is attributed to both WF change and superhydrogenation effects. Thermal annealing restores the PPP chains by eliminating superhydrogenation, which causes the C 1s BE to shift to a high BE. This study provides deep insights into the mechanisms of Ullmann coupling on surfaces, highlighting the significant role of WF alterations and AH treatments in these processes.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Origin of Elemental Chemical Shift and the Role of Atomic Hydrogen in a Surface Ullmann Coupling System.\",\"authors\":\"Dong Han, Honghe Ding, Juanjuan Xiong, Tianchen Qin, Xingwang Cheng, Jun Hu, Qian Xu, Junfa Zhu\",\"doi\":\"10.1021/acsnano.4c09375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Ullmann coupling of aryl halides is a powerful method in the on-surface synthesis of functional materials. Understanding its basic aspects and influencing factors can aid in the use of this tool for the fabrication of intriguing structures. In this study, we unveil (1) the origin of the shift in the elemental binding energy (BE) and (2) the functions of atomic hydrogen (AH) in a typical Ullmann coupling system using combined spectroscopy and microscopy techniques. During debromination of the aryl halide precursor, the work function (WF) alteration is correlated with the surface Br amount. The WF change instead of C-Ag formation is proposed to play a dominant role in the shift of the molecular C 1s BE. AH dosing onto organometallic chains leads to chain decomposition and surface Br removal. In contrast, AH dosing onto covalent poly(<i>para-</i>phenylene) (PPP) chains results in superhydrogenation in addition to Br removal. The C 1s BE shift is attributed to both WF change and superhydrogenation effects. Thermal annealing restores the PPP chains by eliminating superhydrogenation, which causes the C 1s BE to shift to a high BE. This study provides deep insights into the mechanisms of Ullmann coupling on surfaces, highlighting the significant role of WF alterations and AH treatments in these processes.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c09375\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09375","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

芳基卤化物的乌尔曼偶联是表面合成功能材料的一种有效方法。了解其基本方面和影响因素有助于利用这一工具制造奇妙的结构。在本研究中,我们采用光谱学和显微镜相结合的技术,揭示了(1)元素结合能(BE)偏移的起源和(2)典型乌尔曼偶联体系中原子氢(AH)的功能。在芳基卤化物前驱体的脱溴过程中,功函数(WF)的变化与表面 Br 量相关。在分子 C 1s BE 转变的过程中,WF 的变化而不是 C-Ag 的形成起了主导作用。在有机金属链上添加 AH 会导致链的分解和表面 Br 的去除。相反,在共价聚对苯二甲酸丁二酯 (PPP) 链上添加 AH 除会导致 Br 清除外,还会导致超氢化。C 1s BE 偏移可归因于 WF 变化和超氢化效应。热退火通过消除超氢化作用恢复了 PPP 链,从而导致 C 1s BE 向高 BE 转变。这项研究深入揭示了表面乌尔曼耦合的机理,强调了 WF 改变和 AH 处理在这些过程中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling the Origin of Elemental Chemical Shift and the Role of Atomic Hydrogen in a Surface Ullmann Coupling System.

Unraveling the Origin of Elemental Chemical Shift and the Role of Atomic Hydrogen in a Surface Ullmann Coupling System.

The Ullmann coupling of aryl halides is a powerful method in the on-surface synthesis of functional materials. Understanding its basic aspects and influencing factors can aid in the use of this tool for the fabrication of intriguing structures. In this study, we unveil (1) the origin of the shift in the elemental binding energy (BE) and (2) the functions of atomic hydrogen (AH) in a typical Ullmann coupling system using combined spectroscopy and microscopy techniques. During debromination of the aryl halide precursor, the work function (WF) alteration is correlated with the surface Br amount. The WF change instead of C-Ag formation is proposed to play a dominant role in the shift of the molecular C 1s BE. AH dosing onto organometallic chains leads to chain decomposition and surface Br removal. In contrast, AH dosing onto covalent poly(para-phenylene) (PPP) chains results in superhydrogenation in addition to Br removal. The C 1s BE shift is attributed to both WF change and superhydrogenation effects. Thermal annealing restores the PPP chains by eliminating superhydrogenation, which causes the C 1s BE to shift to a high BE. This study provides deep insights into the mechanisms of Ullmann coupling on surfaces, highlighting the significant role of WF alterations and AH treatments in these processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信