通过原子操作制造高价 Fe4+,在工业级电流密度下实现高效、超稳定的氧气进化。

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-10-22 Epub Date: 2024-10-10 DOI:10.1021/acsnano.4c09259
Yong Feng, Huan Wang, Kun Feng, Chengyu Li, Shuo Li, Cheng Lu, Youyong Li, Ding Ma, Jun Zhong
{"title":"通过原子操作制造高价 Fe4+,在工业级电流密度下实现高效、超稳定的氧气进化。","authors":"Yong Feng, Huan Wang, Kun Feng, Chengyu Li, Shuo Li, Cheng Lu, Youyong Li, Ding Ma, Jun Zhong","doi":"10.1021/acsnano.4c09259","DOIUrl":null,"url":null,"abstract":"<p><p>Manipulating the electronic structure of a catalyst at the atomic level is an effective but challenging way to improve the catalytic performance. Here, by stretching the Fe-O bond in FeOOH with an inserted Mo atom, a Fe-O-Mo unit can be created, which will induce the formation of high-valent Fe<sup>4+</sup> during the alkaline oxygen evolution reaction (OER). The highly active Fe<sup>4+</sup> state has been clearly revealed by in situ X-ray absorption spectroscopy, which can both enhance the oxidation capability and lead to an efficient and stable adsorbate evolution mechanism (AEM) pathway for the OER. As a result, the obtained Fe-Mo-Ni<sub>3</sub>S<sub>2</sub> catalyst exhibits both superior OER activity and outstanding stability, which can achieve an industrial-level current density of 1 A cm<sup>-2</sup> at a low overpotential of 259 mV (at 60 °C) and can stably work at the large current for more than 2000 h. Moreover, by coupling with commercial Pt/C, the Fe-Mo-Ni<sub>3</sub>S<sub>2</sub>∥Pt/C system can be used in the anion exchange membrane cell to acquire 1 A cm<sup>-2</sup> for overall water splitting at 1.68 V (2.03 V for 4 A cm<sup>-2</sup>), outperforming the benchmark RuO<sub>2</sub>∥Pt/C system. The efficient, low-cost, and ultrastable OER catalyst enabled by manipulating the atomic structure may provide potential opportunities for future practical water splitting.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic Manipulation to Create High-Valent Fe<sup>4+</sup> for Efficient and Ultrastable Oxygen Evolution at Industrial-Level Current Density.\",\"authors\":\"Yong Feng, Huan Wang, Kun Feng, Chengyu Li, Shuo Li, Cheng Lu, Youyong Li, Ding Ma, Jun Zhong\",\"doi\":\"10.1021/acsnano.4c09259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Manipulating the electronic structure of a catalyst at the atomic level is an effective but challenging way to improve the catalytic performance. Here, by stretching the Fe-O bond in FeOOH with an inserted Mo atom, a Fe-O-Mo unit can be created, which will induce the formation of high-valent Fe<sup>4+</sup> during the alkaline oxygen evolution reaction (OER). The highly active Fe<sup>4+</sup> state has been clearly revealed by in situ X-ray absorption spectroscopy, which can both enhance the oxidation capability and lead to an efficient and stable adsorbate evolution mechanism (AEM) pathway for the OER. As a result, the obtained Fe-Mo-Ni<sub>3</sub>S<sub>2</sub> catalyst exhibits both superior OER activity and outstanding stability, which can achieve an industrial-level current density of 1 A cm<sup>-2</sup> at a low overpotential of 259 mV (at 60 °C) and can stably work at the large current for more than 2000 h. Moreover, by coupling with commercial Pt/C, the Fe-Mo-Ni<sub>3</sub>S<sub>2</sub>∥Pt/C system can be used in the anion exchange membrane cell to acquire 1 A cm<sup>-2</sup> for overall water splitting at 1.68 V (2.03 V for 4 A cm<sup>-2</sup>), outperforming the benchmark RuO<sub>2</sub>∥Pt/C system. The efficient, low-cost, and ultrastable OER catalyst enabled by manipulating the atomic structure may provide potential opportunities for future practical water splitting.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c09259\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09259","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在原子水平上操纵催化剂的电子结构是提高催化性能的一种有效但具有挑战性的方法。在这里,通过用插入的 Mo 原子拉伸 FeOOH 中的 Fe-O 键,可以创建一个 Fe-O-Mo 单元,从而在碱性氧进化反应(OER)中诱导形成高价的 Fe4+。原位 X 射线吸收光谱清楚地揭示了高活性 Fe4+ 状态,它既能增强氧化能力,又能为 OER 提供高效稳定的吸附剂进化机制(AEM)途径。因此,所获得的铁-钼-镍-3S2 催化剂具有优异的 OER 活性和出色的稳定性,能在 259 mV 的低过电位(60 °C)下达到 1 A cm-2 的工业级电流密度,并能在大电流下稳定工作 2000 小时以上。此外,通过与商用 Pt/C 的耦合,Fe-Mo-Ni3S2∥Pt/C 系统可用于阴离子交换膜电池,在 1.68 V(4 A cm-2 时为 2.03 V)的电压下获得 1 A cm-2 的整体水分离效果,优于基准 RuO2∥Pt/C 系统。通过操纵原子结构实现的高效、低成本和超稳定 OER 催化剂可能为未来的实用水分离提供潜在的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atomic Manipulation to Create High-Valent Fe<sup>4+</sup> for Efficient and Ultrastable Oxygen Evolution at Industrial-Level Current Density.

Atomic Manipulation to Create High-Valent Fe4+ for Efficient and Ultrastable Oxygen Evolution at Industrial-Level Current Density.

Manipulating the electronic structure of a catalyst at the atomic level is an effective but challenging way to improve the catalytic performance. Here, by stretching the Fe-O bond in FeOOH with an inserted Mo atom, a Fe-O-Mo unit can be created, which will induce the formation of high-valent Fe4+ during the alkaline oxygen evolution reaction (OER). The highly active Fe4+ state has been clearly revealed by in situ X-ray absorption spectroscopy, which can both enhance the oxidation capability and lead to an efficient and stable adsorbate evolution mechanism (AEM) pathway for the OER. As a result, the obtained Fe-Mo-Ni3S2 catalyst exhibits both superior OER activity and outstanding stability, which can achieve an industrial-level current density of 1 A cm-2 at a low overpotential of 259 mV (at 60 °C) and can stably work at the large current for more than 2000 h. Moreover, by coupling with commercial Pt/C, the Fe-Mo-Ni3S2∥Pt/C system can be used in the anion exchange membrane cell to acquire 1 A cm-2 for overall water splitting at 1.68 V (2.03 V for 4 A cm-2), outperforming the benchmark RuO2∥Pt/C system. The efficient, low-cost, and ultrastable OER catalyst enabled by manipulating the atomic structure may provide potential opportunities for future practical water splitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信