碱金属离子的定量预叠加可精确调节二茂钛的 Li+ 储量

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Junyan Li, Xin Ge, Qing Liang, Zizhun Wang, Wenjuan Han, Xinyan Zhou, Ming Lu, Wei Zhang, Weitao Zheng
{"title":"碱金属离子的定量预叠加可精确调节二茂钛的 Li+ 储量","authors":"Junyan Li, Xin Ge, Qing Liang, Zizhun Wang, Wenjuan Han, Xinyan Zhou, Ming Lu, Wei Zhang, Weitao Zheng","doi":"10.1016/j.ensm.2024.103828","DOIUrl":null,"url":null,"abstract":"Ion intercalation is crucial for improving energy storage performance, but controlling the content of intercalated ions is challenging for two-dimensional (2D) electrode materials although it enables clarifying individual intercalation behaviors and thereof pinpointing the intercalation mechanism. Herein, the equal‐content alkali metal ions were successfully manipulated to intercalate into Mo<sub>2</sub>CT<em><sub>x</sub></em> MXene electrodes via an electrochemistry‐driven approach via the anti‐battery principle. Based on a variety of alkali metal ions pre‐intercalation into the Mo<sub>2</sub>CT<em><sub>x</sub></em> MXene (M<sup>+</sup>‐Mo<sub>2</sub>CT<em><sub>x</sub></em>) electrodes, the lithium storage performance was largely improved. Li<sup>+</sup>‐Mo<sub>2</sub>CT<em><sub>x</sub></em> electrode exhibits an outstanding capacity of 395.49 mAh g<sup>−1</sup> at 200 mA g<sup>−1</sup> after 100 cycles due to the enhanced redox activity induced by high-valence Mo and low-F interlayer exposed surface. Besides, the K<sup>+</sup>‐Mo<sub>2</sub>CT<em><sub>x</sub></em> electrode delivers excellent rate performance due to faster ion transfer kinetics originating from the pillaring effect of pre-intercalated K<sup>+</sup> ions. In a broader sense, our study opens up a new route to accurately improve the electrochemical performance via precisely tuning the content of ions intercalated into 2D intercalation‐type materials.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":null,"pages":null},"PeriodicalIF":18.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative pre-intercalation of alkali metal ions enables precisely modulating Li+ storage of Mxenes\",\"authors\":\"Junyan Li, Xin Ge, Qing Liang, Zizhun Wang, Wenjuan Han, Xinyan Zhou, Ming Lu, Wei Zhang, Weitao Zheng\",\"doi\":\"10.1016/j.ensm.2024.103828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ion intercalation is crucial for improving energy storage performance, but controlling the content of intercalated ions is challenging for two-dimensional (2D) electrode materials although it enables clarifying individual intercalation behaviors and thereof pinpointing the intercalation mechanism. Herein, the equal‐content alkali metal ions were successfully manipulated to intercalate into Mo<sub>2</sub>CT<em><sub>x</sub></em> MXene electrodes via an electrochemistry‐driven approach via the anti‐battery principle. Based on a variety of alkali metal ions pre‐intercalation into the Mo<sub>2</sub>CT<em><sub>x</sub></em> MXene (M<sup>+</sup>‐Mo<sub>2</sub>CT<em><sub>x</sub></em>) electrodes, the lithium storage performance was largely improved. Li<sup>+</sup>‐Mo<sub>2</sub>CT<em><sub>x</sub></em> electrode exhibits an outstanding capacity of 395.49 mAh g<sup>−1</sup> at 200 mA g<sup>−1</sup> after 100 cycles due to the enhanced redox activity induced by high-valence Mo and low-F interlayer exposed surface. Besides, the K<sup>+</sup>‐Mo<sub>2</sub>CT<em><sub>x</sub></em> electrode delivers excellent rate performance due to faster ion transfer kinetics originating from the pillaring effect of pre-intercalated K<sup>+</sup> ions. In a broader sense, our study opens up a new route to accurately improve the electrochemical performance via precisely tuning the content of ions intercalated into 2D intercalation‐type materials.\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ensm.2024.103828\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103828","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

离子插层对提高储能性能至关重要,但对于二维(2D)电极材料来说,控制插层离子的含量具有挑战性,尽管这样做可以澄清单个插层行为,从而精确定位插层机制。在此,我们通过反电池原理,采用电化学驱动方法,成功地将等含量碱金属离子插层到 Mo2CTx MXene 电极中。在多种碱金属离子预插层到 Mo2CTx MXene(M+-Mo2CTx)电极中的基础上,锂存储性能得到了很大程度的提高。由于高价态 Mo 和低价态 F 层间暴露表面增强了氧化还原活性,Li+-Mo2CTx 电极在 200 mA g-1 循环后显示出 395.49 mAh g-1 的出色容量。此外,K+-Mo2CTx 电极还具有优异的速率性能,这得益于预夹层 K+ 离子的支柱效应所产生的更快的离子转移动力学。从广义上讲,我们的研究开辟了一条新的途径,通过精确调节插层离子在二维插层型材料中的含量来准确提高电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantitative pre-intercalation of alkali metal ions enables precisely modulating Li+ storage of Mxenes

Quantitative pre-intercalation of alkali metal ions enables precisely modulating Li+ storage of Mxenes
Ion intercalation is crucial for improving energy storage performance, but controlling the content of intercalated ions is challenging for two-dimensional (2D) electrode materials although it enables clarifying individual intercalation behaviors and thereof pinpointing the intercalation mechanism. Herein, the equal‐content alkali metal ions were successfully manipulated to intercalate into Mo2CTx MXene electrodes via an electrochemistry‐driven approach via the anti‐battery principle. Based on a variety of alkali metal ions pre‐intercalation into the Mo2CTx MXene (M+‐Mo2CTx) electrodes, the lithium storage performance was largely improved. Li+‐Mo2CTx electrode exhibits an outstanding capacity of 395.49 mAh g−1 at 200 mA g−1 after 100 cycles due to the enhanced redox activity induced by high-valence Mo and low-F interlayer exposed surface. Besides, the K+‐Mo2CTx electrode delivers excellent rate performance due to faster ion transfer kinetics originating from the pillaring effect of pre-intercalated K+ ions. In a broader sense, our study opens up a new route to accurately improve the electrochemical performance via precisely tuning the content of ions intercalated into 2D intercalation‐type materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信