{"title":"机械驱动自愈合 MXene 应变片,实现超应变运行","authors":"Hao Wang, Yong Lin, Cheng Yang, Chong Bai, Gaohua Hu, Yuping Sun, Menglu Wang, Yan-qing Lu, Desheng Kong","doi":"10.1021/acs.nanolett.4c04023","DOIUrl":null,"url":null,"abstract":"Compliant strain gauges are well-suited to monitor tiny movements and processes in the body. However, they are easily damaged by unexpected impacts in practical applications, limiting their utility in controlled laboratory environments. This study introduces elastic microcracked MXene films for mechanically driven self-healing strain gauges. MXene films are deposited on soft silicone substrates and intentionally stretched to create saturated microcracks. The resulting device not only has high sensitivity but also can recover its original sensing capability even after experiencing failure-level overstrains. This electrical self-healing ability is achieved through the elastic rebound of the substrate, which autonomously restores the microcracked morphology of the MXene film. The MXene strain gauge can withstand overextension, twisting, impact forces, and even car rolling. The device is also resilient to touch-induced damage during monitoring of physiological motions. The mechanically driven self-healing strategy may effectively improve the durability of highly sensitive strain sensors.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"39 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanically Driven Self-Healing MXene Strain Gauges for Overstrain-Tolerant Operation\",\"authors\":\"Hao Wang, Yong Lin, Cheng Yang, Chong Bai, Gaohua Hu, Yuping Sun, Menglu Wang, Yan-qing Lu, Desheng Kong\",\"doi\":\"10.1021/acs.nanolett.4c04023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compliant strain gauges are well-suited to monitor tiny movements and processes in the body. However, they are easily damaged by unexpected impacts in practical applications, limiting their utility in controlled laboratory environments. This study introduces elastic microcracked MXene films for mechanically driven self-healing strain gauges. MXene films are deposited on soft silicone substrates and intentionally stretched to create saturated microcracks. The resulting device not only has high sensitivity but also can recover its original sensing capability even after experiencing failure-level overstrains. This electrical self-healing ability is achieved through the elastic rebound of the substrate, which autonomously restores the microcracked morphology of the MXene film. The MXene strain gauge can withstand overextension, twisting, impact forces, and even car rolling. The device is also resilient to touch-induced damage during monitoring of physiological motions. The mechanically driven self-healing strategy may effectively improve the durability of highly sensitive strain sensors.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c04023\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04023","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanically Driven Self-Healing MXene Strain Gauges for Overstrain-Tolerant Operation
Compliant strain gauges are well-suited to monitor tiny movements and processes in the body. However, they are easily damaged by unexpected impacts in practical applications, limiting their utility in controlled laboratory environments. This study introduces elastic microcracked MXene films for mechanically driven self-healing strain gauges. MXene films are deposited on soft silicone substrates and intentionally stretched to create saturated microcracks. The resulting device not only has high sensitivity but also can recover its original sensing capability even after experiencing failure-level overstrains. This electrical self-healing ability is achieved through the elastic rebound of the substrate, which autonomously restores the microcracked morphology of the MXene film. The MXene strain gauge can withstand overextension, twisting, impact forces, and even car rolling. The device is also resilient to touch-induced damage during monitoring of physiological motions. The mechanically driven self-healing strategy may effectively improve the durability of highly sensitive strain sensors.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.