Michael A Boss,Dariya Malyarenko,Savannah Partridge,Nancy Obuchowski,Amita Shukla-Dave,Jessica M Winfield,Clifton D Fuller,Kevin Miller,Virendra Mishra,Michael Ohliger,Lisa J Wilmes,Raj Attariwala,Trevor Andrews,Nandita M deSouza,Daniel J Margolis,Thomas L Chenevert
{"title":"扩散加权核磁共振成像的 QIBA 配置文件:作为定量成像生物标志物的表观扩散系数","authors":"Michael A Boss,Dariya Malyarenko,Savannah Partridge,Nancy Obuchowski,Amita Shukla-Dave,Jessica M Winfield,Clifton D Fuller,Kevin Miller,Virendra Mishra,Michael Ohliger,Lisa J Wilmes,Raj Attariwala,Trevor Andrews,Nandita M deSouza,Daniel J Margolis,Thomas L Chenevert","doi":"10.1148/radiol.233055","DOIUrl":null,"url":null,"abstract":"The apparent diffusion coefficient (ADC) provides a quantitative measure of water mobility that can be used to probe alterations in tissue microstructure due to disease or treatment. Establishment of the accepted level of variance in ADC measurements for each clinical application is critical for its successful implementation. The Diffusion-Weighted Imaging Biomarker Committee of the Quantitative Imaging Biomarkers Alliance (QIBA) has recently advanced the ADC Profile from the consensus to clinically feasible stage for the brain, liver, prostate, and breast. This profile distills multiple studies on ADC repeatability and describes detailed procedures to achieve stated performance claims on an observed ADC change within acceptable confidence limits. In addition to reviewing the current ADC Profile claims, this report has used recent literature to develop proposed updates for establishing metrology benchmarks for mean lesion ADC change that account for measurement variance. Specifically, changes in mean ADC exceeding 8% for brain lesions, 27% for liver lesions, 27% for prostate lesions, and 15% for breast lesions are claimed to represent true changes with 95% confidence. This report also discusses the development of the ADC Profile, highlighting its various stages, and describes the workflow essential to achieving a standardized implementation of advanced quantitative diffusion-weighted MRI in the clinic. The presented QIBA ADC Profile guidelines should enable successful clinical application of ADC as a quantitative imaging biomarker and ensure reproducible ADC measurements that can be used to confidently evaluate longitudinal changes and treatment response for individual patients.","PeriodicalId":20896,"journal":{"name":"Radiology","volume":"40 1","pages":"e233055"},"PeriodicalIF":12.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The QIBA Profile for Diffusion-Weighted MRI: Apparent Diffusion Coefficient as a Quantitative Imaging Biomarker.\",\"authors\":\"Michael A Boss,Dariya Malyarenko,Savannah Partridge,Nancy Obuchowski,Amita Shukla-Dave,Jessica M Winfield,Clifton D Fuller,Kevin Miller,Virendra Mishra,Michael Ohliger,Lisa J Wilmes,Raj Attariwala,Trevor Andrews,Nandita M deSouza,Daniel J Margolis,Thomas L Chenevert\",\"doi\":\"10.1148/radiol.233055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The apparent diffusion coefficient (ADC) provides a quantitative measure of water mobility that can be used to probe alterations in tissue microstructure due to disease or treatment. Establishment of the accepted level of variance in ADC measurements for each clinical application is critical for its successful implementation. The Diffusion-Weighted Imaging Biomarker Committee of the Quantitative Imaging Biomarkers Alliance (QIBA) has recently advanced the ADC Profile from the consensus to clinically feasible stage for the brain, liver, prostate, and breast. This profile distills multiple studies on ADC repeatability and describes detailed procedures to achieve stated performance claims on an observed ADC change within acceptable confidence limits. In addition to reviewing the current ADC Profile claims, this report has used recent literature to develop proposed updates for establishing metrology benchmarks for mean lesion ADC change that account for measurement variance. Specifically, changes in mean ADC exceeding 8% for brain lesions, 27% for liver lesions, 27% for prostate lesions, and 15% for breast lesions are claimed to represent true changes with 95% confidence. This report also discusses the development of the ADC Profile, highlighting its various stages, and describes the workflow essential to achieving a standardized implementation of advanced quantitative diffusion-weighted MRI in the clinic. The presented QIBA ADC Profile guidelines should enable successful clinical application of ADC as a quantitative imaging biomarker and ensure reproducible ADC measurements that can be used to confidently evaluate longitudinal changes and treatment response for individual patients.\",\"PeriodicalId\":20896,\"journal\":{\"name\":\"Radiology\",\"volume\":\"40 1\",\"pages\":\"e233055\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1148/radiol.233055\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1148/radiol.233055","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
The QIBA Profile for Diffusion-Weighted MRI: Apparent Diffusion Coefficient as a Quantitative Imaging Biomarker.
The apparent diffusion coefficient (ADC) provides a quantitative measure of water mobility that can be used to probe alterations in tissue microstructure due to disease or treatment. Establishment of the accepted level of variance in ADC measurements for each clinical application is critical for its successful implementation. The Diffusion-Weighted Imaging Biomarker Committee of the Quantitative Imaging Biomarkers Alliance (QIBA) has recently advanced the ADC Profile from the consensus to clinically feasible stage for the brain, liver, prostate, and breast. This profile distills multiple studies on ADC repeatability and describes detailed procedures to achieve stated performance claims on an observed ADC change within acceptable confidence limits. In addition to reviewing the current ADC Profile claims, this report has used recent literature to develop proposed updates for establishing metrology benchmarks for mean lesion ADC change that account for measurement variance. Specifically, changes in mean ADC exceeding 8% for brain lesions, 27% for liver lesions, 27% for prostate lesions, and 15% for breast lesions are claimed to represent true changes with 95% confidence. This report also discusses the development of the ADC Profile, highlighting its various stages, and describes the workflow essential to achieving a standardized implementation of advanced quantitative diffusion-weighted MRI in the clinic. The presented QIBA ADC Profile guidelines should enable successful clinical application of ADC as a quantitative imaging biomarker and ensure reproducible ADC measurements that can be used to confidently evaluate longitudinal changes and treatment response for individual patients.
期刊介绍:
Published regularly since 1923 by the Radiological Society of North America (RSNA), Radiology has long been recognized as the authoritative reference for the most current, clinically relevant and highest quality research in the field of radiology. Each month the journal publishes approximately 240 pages of peer-reviewed original research, authoritative reviews, well-balanced commentary on significant articles, and expert opinion on new techniques and technologies.
Radiology publishes cutting edge and impactful imaging research articles in radiology and medical imaging in order to help improve human health.