Andy Chevigné,Daniel F Legler,Antal Rot,Silvano Sozzani,Martyna Szpakowska,Marcus Thelen
{"title":"国际基础与临床药理学联合会。CXVIII.非典型趋化因子受体(包括 ACKR5)命名法的更新。","authors":"Andy Chevigné,Daniel F Legler,Antal Rot,Silvano Sozzani,Martyna Szpakowska,Marcus Thelen","doi":"10.1124/pharmrev.124.001361","DOIUrl":null,"url":null,"abstract":"Chemokines signal through classical G protein-coupled receptors (GPCRs) to induce cell migration during development, immune homeostasis and multiple diseases. Over the last decade a subfamily of atypical chemokine receptors (ACKRs) was delineated from GPCRs based on their inability to trigger conventional G protein signaling or mediate cell migration in response to chemokines. These receptors nevertheless play an important role within the chemokine system by sequestering, transporting or internalizing chemokines thereby regulating their availability and shaping their gradients. GPR182, the recently deorphanized chemokine receptor, shares about 30% of sequence similarity with its closest relative ACKR3. GPR182 is mainly expressed on endothelial cells and was proposed to act as a scavenger regulating the availability of a large set of chemokines from the CXC, CC and XC families and to act cooperatively with ACKR3 and ACKR4. Unlike other ACKRs, GPR182 was shown to have a strong constitutive interaction with β-arrestins that is required for intracellular receptor trafficking and chemokine scavenging. Chemokine ligation of GPR182 has no additional detectable impact on β-arrestin recruitment. Genetic ablation of GPR182 affects spleen size, myelopoiesis, and serum chemokine levels, indicating its role in chemokine homeostasis and immune regulation. GPR182 was also reported to regulate immune responses to bloodborne antigens and tumorigenesis. Taken together, compelling cumulative evidence indicates that GPR182 does not trigger G protein-mediated signaling but acts as a scavenger for chemokines in vitro and in vivo strongly supporting its inclusion as ACKR5 in the systematic nomenclature of chemokine receptors. Significance Statement The summarized presented findings strongly support the designation of GPR182 as ACKR5 and its formal inclusion in the family of atypical chemokine receptors.","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"38 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"International Union of Basic and Clinical Pharmacology. CXVIII. Update on the Nomenclature for Atypical Chemokine Receptors including ACKR5.\",\"authors\":\"Andy Chevigné,Daniel F Legler,Antal Rot,Silvano Sozzani,Martyna Szpakowska,Marcus Thelen\",\"doi\":\"10.1124/pharmrev.124.001361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemokines signal through classical G protein-coupled receptors (GPCRs) to induce cell migration during development, immune homeostasis and multiple diseases. Over the last decade a subfamily of atypical chemokine receptors (ACKRs) was delineated from GPCRs based on their inability to trigger conventional G protein signaling or mediate cell migration in response to chemokines. These receptors nevertheless play an important role within the chemokine system by sequestering, transporting or internalizing chemokines thereby regulating their availability and shaping their gradients. GPR182, the recently deorphanized chemokine receptor, shares about 30% of sequence similarity with its closest relative ACKR3. GPR182 is mainly expressed on endothelial cells and was proposed to act as a scavenger regulating the availability of a large set of chemokines from the CXC, CC and XC families and to act cooperatively with ACKR3 and ACKR4. Unlike other ACKRs, GPR182 was shown to have a strong constitutive interaction with β-arrestins that is required for intracellular receptor trafficking and chemokine scavenging. Chemokine ligation of GPR182 has no additional detectable impact on β-arrestin recruitment. Genetic ablation of GPR182 affects spleen size, myelopoiesis, and serum chemokine levels, indicating its role in chemokine homeostasis and immune regulation. GPR182 was also reported to regulate immune responses to bloodborne antigens and tumorigenesis. Taken together, compelling cumulative evidence indicates that GPR182 does not trigger G protein-mediated signaling but acts as a scavenger for chemokines in vitro and in vivo strongly supporting its inclusion as ACKR5 in the systematic nomenclature of chemokine receptors. Significance Statement The summarized presented findings strongly support the designation of GPR182 as ACKR5 and its formal inclusion in the family of atypical chemokine receptors.\",\"PeriodicalId\":19780,\"journal\":{\"name\":\"Pharmacological Reviews\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacological Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1124/pharmrev.124.001361\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/pharmrev.124.001361","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
International Union of Basic and Clinical Pharmacology. CXVIII. Update on the Nomenclature for Atypical Chemokine Receptors including ACKR5.
Chemokines signal through classical G protein-coupled receptors (GPCRs) to induce cell migration during development, immune homeostasis and multiple diseases. Over the last decade a subfamily of atypical chemokine receptors (ACKRs) was delineated from GPCRs based on their inability to trigger conventional G protein signaling or mediate cell migration in response to chemokines. These receptors nevertheless play an important role within the chemokine system by sequestering, transporting or internalizing chemokines thereby regulating their availability and shaping their gradients. GPR182, the recently deorphanized chemokine receptor, shares about 30% of sequence similarity with its closest relative ACKR3. GPR182 is mainly expressed on endothelial cells and was proposed to act as a scavenger regulating the availability of a large set of chemokines from the CXC, CC and XC families and to act cooperatively with ACKR3 and ACKR4. Unlike other ACKRs, GPR182 was shown to have a strong constitutive interaction with β-arrestins that is required for intracellular receptor trafficking and chemokine scavenging. Chemokine ligation of GPR182 has no additional detectable impact on β-arrestin recruitment. Genetic ablation of GPR182 affects spleen size, myelopoiesis, and serum chemokine levels, indicating its role in chemokine homeostasis and immune regulation. GPR182 was also reported to regulate immune responses to bloodborne antigens and tumorigenesis. Taken together, compelling cumulative evidence indicates that GPR182 does not trigger G protein-mediated signaling but acts as a scavenger for chemokines in vitro and in vivo strongly supporting its inclusion as ACKR5 in the systematic nomenclature of chemokine receptors. Significance Statement The summarized presented findings strongly support the designation of GPR182 as ACKR5 and its formal inclusion in the family of atypical chemokine receptors.
期刊介绍:
Pharmacological Reviews is a highly popular and well-received journal that has a long and rich history of success. It was first published in 1949 and is currently published bimonthly online by the American Society for Pharmacology and Experimental Therapeutics. The journal is indexed or abstracted by various databases, including Biological Abstracts, BIOSIS Previews Database, Biosciences Information Service, Current Contents/Life Sciences, EMBASE/Excerpta Medica, Index Medicus, Index to Scientific Reviews, Medical Documentation Service, Reference Update, Research Alerts, Science Citation Index, and SciSearch. Pharmacological Reviews offers comprehensive reviews of new pharmacological fields and is able to stay up-to-date with published content. Overall, it is highly regarded by scholars.