绿系真核生物碳固定相分离的杂交机制

IF 15.8 1区 生物学 Q1 PLANT SCIENCES
James Barrett, Mihris I. S. Naduthodi, Yuwei Mao, Clément Dégut, Sabina Musiał, Aidan Salter, Mark C. Leake, Michael J. Plevin, Alistair J. McCormick, James N. Blaza, Luke C. M. Mackinder
{"title":"绿系真核生物碳固定相分离的杂交机制","authors":"James Barrett, Mihris I. S. Naduthodi, Yuwei Mao, Clément Dégut, Sabina Musiał, Aidan Salter, Mark C. Leake, Michael J. Plevin, Alistair J. McCormick, James N. Blaza, Luke C. M. Mackinder","doi":"10.1038/s41477-024-01812-x","DOIUrl":null,"url":null,"abstract":"CO2 fixation is commonly limited by inefficiency of the CO2-fixing enzyme Rubisco. Eukaryotic algae concentrate and fix CO2 in phase-separated condensates called pyrenoids, which complete up to one-third of global CO2 fixation. Condensation of Rubisco in pyrenoids is dependent on interaction with disordered linker proteins that show little conservation between species. We developed a sequence-independent bioinformatic pipeline to identify linker proteins in green algae. We report the linker from Chlorella and demonstrate that it binds a conserved site on the Rubisco large subunit. We show that the Chlorella linker phase separates Chlamydomonas Rubisco and that despite their separation by ~800 million years of evolution, the Chlorella linker can support the formation of a functional pyrenoid in Chlamydomonas. This cross-species reactivity extends to plants, with the Chlorella linker able to drive condensation of some native plant Rubiscos in vitro and in planta. Our results represent an exciting frontier for pyrenoid engineering in plants, which is modelled to increase crop yields. Barrett et al. identify a key Rubisco phase-separating protein in the CO2-fixing pyrenoid of Chlorella algae. This protein’s broad promiscuity for green lineage Rubiscos may aid in engineering CO2-supercharging pyrenoids in plants to boost yields.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 11","pages":"1801-1813"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01812-x.pdf","citationCount":"0","resultStr":"{\"title\":\"A promiscuous mechanism to phase separate eukaryotic carbon fixation in the green lineage\",\"authors\":\"James Barrett, Mihris I. S. Naduthodi, Yuwei Mao, Clément Dégut, Sabina Musiał, Aidan Salter, Mark C. Leake, Michael J. Plevin, Alistair J. McCormick, James N. Blaza, Luke C. M. Mackinder\",\"doi\":\"10.1038/s41477-024-01812-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CO2 fixation is commonly limited by inefficiency of the CO2-fixing enzyme Rubisco. Eukaryotic algae concentrate and fix CO2 in phase-separated condensates called pyrenoids, which complete up to one-third of global CO2 fixation. Condensation of Rubisco in pyrenoids is dependent on interaction with disordered linker proteins that show little conservation between species. We developed a sequence-independent bioinformatic pipeline to identify linker proteins in green algae. We report the linker from Chlorella and demonstrate that it binds a conserved site on the Rubisco large subunit. We show that the Chlorella linker phase separates Chlamydomonas Rubisco and that despite their separation by ~800 million years of evolution, the Chlorella linker can support the formation of a functional pyrenoid in Chlamydomonas. This cross-species reactivity extends to plants, with the Chlorella linker able to drive condensation of some native plant Rubiscos in vitro and in planta. Our results represent an exciting frontier for pyrenoid engineering in plants, which is modelled to increase crop yields. Barrett et al. identify a key Rubisco phase-separating protein in the CO2-fixing pyrenoid of Chlorella algae. This protein’s broad promiscuity for green lineage Rubiscos may aid in engineering CO2-supercharging pyrenoids in plants to boost yields.\",\"PeriodicalId\":18904,\"journal\":{\"name\":\"Nature Plants\",\"volume\":\"10 11\",\"pages\":\"1801-1813\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41477-024-01812-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41477-024-01812-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-024-01812-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳的固定通常受到二氧化碳固定酶 Rubisco 效率低下的限制。真核藻类将二氧化碳浓缩并固定在称为焦磷酸的相分离凝结物中,完成了全球三分之一的二氧化碳固定。Rubisco在焦磷酸中的凝结依赖于与无序连接蛋白的相互作用,而无序连接蛋白在物种间几乎没有保存。我们开发了一个独立于序列的生物信息学管道来识别绿藻中的连接蛋白。我们报告了小球藻的连接蛋白,并证明它与 Rubisco 大亚基上的一个保守位点结合。我们的研究表明,小球藻的连接蛋白相分离了衣藻的 Rubisco,尽管二者在进化过程中相隔了约 8 亿年,但小球藻的连接蛋白仍能支持衣藻中功能性焦磷酸的形成。这种跨物种反应性延伸到了植物,小球藻连接体能够在体外和植物体内驱动一些本地植物 Rubiscos 的缩合。我们的研究结果代表了植物中类肾上腺素工程的一个令人兴奋的前沿领域,其模型可提高作物产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A promiscuous mechanism to phase separate eukaryotic carbon fixation in the green lineage

A promiscuous mechanism to phase separate eukaryotic carbon fixation in the green lineage

A promiscuous mechanism to phase separate eukaryotic carbon fixation in the green lineage
CO2 fixation is commonly limited by inefficiency of the CO2-fixing enzyme Rubisco. Eukaryotic algae concentrate and fix CO2 in phase-separated condensates called pyrenoids, which complete up to one-third of global CO2 fixation. Condensation of Rubisco in pyrenoids is dependent on interaction with disordered linker proteins that show little conservation between species. We developed a sequence-independent bioinformatic pipeline to identify linker proteins in green algae. We report the linker from Chlorella and demonstrate that it binds a conserved site on the Rubisco large subunit. We show that the Chlorella linker phase separates Chlamydomonas Rubisco and that despite their separation by ~800 million years of evolution, the Chlorella linker can support the formation of a functional pyrenoid in Chlamydomonas. This cross-species reactivity extends to plants, with the Chlorella linker able to drive condensation of some native plant Rubiscos in vitro and in planta. Our results represent an exciting frontier for pyrenoid engineering in plants, which is modelled to increase crop yields. Barrett et al. identify a key Rubisco phase-separating protein in the CO2-fixing pyrenoid of Chlorella algae. This protein’s broad promiscuity for green lineage Rubiscos may aid in engineering CO2-supercharging pyrenoids in plants to boost yields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Plants
Nature Plants PLANT SCIENCES-
CiteScore
25.30
自引率
2.20%
发文量
196
期刊介绍: Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信