Olga Anczukow, Frédéric H.-T. Allain, Brittany L. Angarola, Douglas L. Black, Angela N. Brooks, Chonghui Cheng, Ana Conesa, Edie I. Crosse, Eduardo Eyras, Ernesto Guccione, Sydney X. Lu, Karla M. Neugebauer, Priyanka Sehgal, Xiao Song, Zuzana Tothova, Juan Valcárcel, Kevin M. Weeks, Gene W. Yeo, Andrei Thomas-Tikhonenko
{"title":"引导癌症中 mRNA 剪接的研究向临床转化","authors":"Olga Anczukow, Frédéric H.-T. Allain, Brittany L. Angarola, Douglas L. Black, Angela N. Brooks, Chonghui Cheng, Ana Conesa, Edie I. Crosse, Eduardo Eyras, Ernesto Guccione, Sydney X. Lu, Karla M. Neugebauer, Priyanka Sehgal, Xiao Song, Zuzana Tothova, Juan Valcárcel, Kevin M. Weeks, Gene W. Yeo, Andrei Thomas-Tikhonenko","doi":"10.1038/s41568-024-00750-2","DOIUrl":null,"url":null,"abstract":"<p>Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also ‘moonlight’ in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to ‘repairing’ mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"65 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steering research on mRNA splicing in cancer towards clinical translation\",\"authors\":\"Olga Anczukow, Frédéric H.-T. Allain, Brittany L. Angarola, Douglas L. Black, Angela N. Brooks, Chonghui Cheng, Ana Conesa, Edie I. Crosse, Eduardo Eyras, Ernesto Guccione, Sydney X. Lu, Karla M. Neugebauer, Priyanka Sehgal, Xiao Song, Zuzana Tothova, Juan Valcárcel, Kevin M. Weeks, Gene W. Yeo, Andrei Thomas-Tikhonenko\",\"doi\":\"10.1038/s41568-024-00750-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also ‘moonlight’ in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to ‘repairing’ mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41568-024-00750-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41568-024-00750-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在几种类型的血液和实体恶性肿瘤中,剪接因子受到反复发生的体细胞突变和拷贝数变异的影响,这通常被视为剪接畸变可驱动癌症发生和发展的初步证据。然而,许多剪接体成分也 "兼职 "参与 DNA 修复和其他细胞过程,因此它们在癌症中的确切作用难以确定。不过,几乎没有人会否认,mRNA剪接失调是大多数癌症的普遍特征。正确解读这些分子指纹可以揭示肿瘤的新弱点和尚未开发的治疗机会。然而,多种技术挑战、挥之不去的误解和悬而未决的问题阻碍了临床转化。首先,由于短读RNA测序不擅长解析完整的mRNA异构体,以及长读RNA测序固有的浅读深度,尤其是在单细胞水平,因此癌症中剪接畸变的总体情况还没有得到很好的界定。虽然已知个别癌症相关同工酶会导致癌症进展,但广泛的剪接改变可能是人类癌症的一个同样重要的特征,而且可能更容易采取行动。这就是说,除了 "修复 "错误剪接的转录本之外,可能的治疗途径还包括利用小分子剪接体抑制剂加剧剪接畸变,利用合成致死方法靶向复发性剪接畸变,以及训练免疫系统识别剪接衍生的新抗原。
Steering research on mRNA splicing in cancer towards clinical translation
Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also ‘moonlight’ in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to ‘repairing’ mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).