{"title":"高超音速飞行器追求适应性规定行为的自适应模糊安全控制:感知和调整机制","authors":"Xiangwei Bu;Ruining Luo;Maolong Lv;Humin Lei","doi":"10.1109/TFUZZ.2024.3476393","DOIUrl":null,"url":null,"abstract":"The perturbations in model parameters of hypersonic flight vehicles (HFVs) are highly likely to induce fluctuations in control error, which can potentially render the existing prescribed performance control (PPC) singular and pose a threat to flight safety. Therefore, our objective is to propose an adaptive fuzzy safety control protocol for HFVs that aims to achieve adaptable prescribed behaviors in the presence of parameter perturbations. To accomplish this, we initially develop a novel error-sensing system for timely detection and forecasting of error fluctuations. Building upon this foundation, we further define an adjustment mechanism that appropriately adjusts the upper envelope upward and the lower envelope downward at regular intervals. In contrast to existing fixed PPC approaches, the proposed sensing and adjustment mechanism enables both velocity and altitude tracking errors to satisfy a new type of adaptable prescribed qualities, thereby ensuring safe flight control of HFVs. In addition, we explore low-computational-burden fuzzy approximation techniques that minimize the required online adaptive parameters while guaranteeing excellent real-time control performance. Finally, comparative simulations are conducted to validate the proposed method.","PeriodicalId":13212,"journal":{"name":"IEEE Transactions on Fuzzy Systems","volume":"32 12","pages":"7050-7062"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Fuzzy Safety Control of Hypersonic Flight Vehicles Pursuing Adaptable Prescribed Behaviors: A Sensing and Adjustment Mechanism\",\"authors\":\"Xiangwei Bu;Ruining Luo;Maolong Lv;Humin Lei\",\"doi\":\"10.1109/TFUZZ.2024.3476393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The perturbations in model parameters of hypersonic flight vehicles (HFVs) are highly likely to induce fluctuations in control error, which can potentially render the existing prescribed performance control (PPC) singular and pose a threat to flight safety. Therefore, our objective is to propose an adaptive fuzzy safety control protocol for HFVs that aims to achieve adaptable prescribed behaviors in the presence of parameter perturbations. To accomplish this, we initially develop a novel error-sensing system for timely detection and forecasting of error fluctuations. Building upon this foundation, we further define an adjustment mechanism that appropriately adjusts the upper envelope upward and the lower envelope downward at regular intervals. In contrast to existing fixed PPC approaches, the proposed sensing and adjustment mechanism enables both velocity and altitude tracking errors to satisfy a new type of adaptable prescribed qualities, thereby ensuring safe flight control of HFVs. In addition, we explore low-computational-burden fuzzy approximation techniques that minimize the required online adaptive parameters while guaranteeing excellent real-time control performance. Finally, comparative simulations are conducted to validate the proposed method.\",\"PeriodicalId\":13212,\"journal\":{\"name\":\"IEEE Transactions on Fuzzy Systems\",\"volume\":\"32 12\",\"pages\":\"7050-7062\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Fuzzy Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10707181/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10707181/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Adaptive Fuzzy Safety Control of Hypersonic Flight Vehicles Pursuing Adaptable Prescribed Behaviors: A Sensing and Adjustment Mechanism
The perturbations in model parameters of hypersonic flight vehicles (HFVs) are highly likely to induce fluctuations in control error, which can potentially render the existing prescribed performance control (PPC) singular and pose a threat to flight safety. Therefore, our objective is to propose an adaptive fuzzy safety control protocol for HFVs that aims to achieve adaptable prescribed behaviors in the presence of parameter perturbations. To accomplish this, we initially develop a novel error-sensing system for timely detection and forecasting of error fluctuations. Building upon this foundation, we further define an adjustment mechanism that appropriately adjusts the upper envelope upward and the lower envelope downward at regular intervals. In contrast to existing fixed PPC approaches, the proposed sensing and adjustment mechanism enables both velocity and altitude tracking errors to satisfy a new type of adaptable prescribed qualities, thereby ensuring safe flight control of HFVs. In addition, we explore low-computational-burden fuzzy approximation techniques that minimize the required online adaptive parameters while guaranteeing excellent real-time control performance. Finally, comparative simulations are conducted to validate the proposed method.
期刊介绍:
The IEEE Transactions on Fuzzy Systems is a scholarly journal that focuses on the theory, design, and application of fuzzy systems. It aims to publish high-quality technical papers that contribute significant technical knowledge and exploratory developments in the field of fuzzy systems. The journal particularly emphasizes engineering systems and scientific applications. In addition to research articles, the Transactions also includes a letters section featuring current information, comments, and rebuttals related to published papers.