高超音速飞行器追求适应性规定行为的自适应模糊安全控制:感知和调整机制

IF 10.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiangwei Bu;Ruining Luo;Maolong Lv;Humin Lei
{"title":"高超音速飞行器追求适应性规定行为的自适应模糊安全控制:感知和调整机制","authors":"Xiangwei Bu;Ruining Luo;Maolong Lv;Humin Lei","doi":"10.1109/TFUZZ.2024.3476393","DOIUrl":null,"url":null,"abstract":"The perturbations in model parameters of hypersonic flight vehicles (HFVs) are highly likely to induce fluctuations in control error, which can potentially render the existing prescribed performance control (PPC) singular and pose a threat to flight safety. Therefore, our objective is to propose an adaptive fuzzy safety control protocol for HFVs that aims to achieve adaptable prescribed behaviors in the presence of parameter perturbations. To accomplish this, we initially develop a novel error-sensing system for timely detection and forecasting of error fluctuations. Building upon this foundation, we further define an adjustment mechanism that appropriately adjusts the upper envelope upward and the lower envelope downward at regular intervals. In contrast to existing fixed PPC approaches, the proposed sensing and adjustment mechanism enables both velocity and altitude tracking errors to satisfy a new type of adaptable prescribed qualities, thereby ensuring safe flight control of HFVs. In addition, we explore low-computational-burden fuzzy approximation techniques that minimize the required online adaptive parameters while guaranteeing excellent real-time control performance. Finally, comparative simulations are conducted to validate the proposed method.","PeriodicalId":13212,"journal":{"name":"IEEE Transactions on Fuzzy Systems","volume":"32 12","pages":"7050-7062"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Fuzzy Safety Control of Hypersonic Flight Vehicles Pursuing Adaptable Prescribed Behaviors: A Sensing and Adjustment Mechanism\",\"authors\":\"Xiangwei Bu;Ruining Luo;Maolong Lv;Humin Lei\",\"doi\":\"10.1109/TFUZZ.2024.3476393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The perturbations in model parameters of hypersonic flight vehicles (HFVs) are highly likely to induce fluctuations in control error, which can potentially render the existing prescribed performance control (PPC) singular and pose a threat to flight safety. Therefore, our objective is to propose an adaptive fuzzy safety control protocol for HFVs that aims to achieve adaptable prescribed behaviors in the presence of parameter perturbations. To accomplish this, we initially develop a novel error-sensing system for timely detection and forecasting of error fluctuations. Building upon this foundation, we further define an adjustment mechanism that appropriately adjusts the upper envelope upward and the lower envelope downward at regular intervals. In contrast to existing fixed PPC approaches, the proposed sensing and adjustment mechanism enables both velocity and altitude tracking errors to satisfy a new type of adaptable prescribed qualities, thereby ensuring safe flight control of HFVs. In addition, we explore low-computational-burden fuzzy approximation techniques that minimize the required online adaptive parameters while guaranteeing excellent real-time control performance. Finally, comparative simulations are conducted to validate the proposed method.\",\"PeriodicalId\":13212,\"journal\":{\"name\":\"IEEE Transactions on Fuzzy Systems\",\"volume\":\"32 12\",\"pages\":\"7050-7062\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Fuzzy Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10707181/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10707181/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Fuzzy Safety Control of Hypersonic Flight Vehicles Pursuing Adaptable Prescribed Behaviors: A Sensing and Adjustment Mechanism
The perturbations in model parameters of hypersonic flight vehicles (HFVs) are highly likely to induce fluctuations in control error, which can potentially render the existing prescribed performance control (PPC) singular and pose a threat to flight safety. Therefore, our objective is to propose an adaptive fuzzy safety control protocol for HFVs that aims to achieve adaptable prescribed behaviors in the presence of parameter perturbations. To accomplish this, we initially develop a novel error-sensing system for timely detection and forecasting of error fluctuations. Building upon this foundation, we further define an adjustment mechanism that appropriately adjusts the upper envelope upward and the lower envelope downward at regular intervals. In contrast to existing fixed PPC approaches, the proposed sensing and adjustment mechanism enables both velocity and altitude tracking errors to satisfy a new type of adaptable prescribed qualities, thereby ensuring safe flight control of HFVs. In addition, we explore low-computational-burden fuzzy approximation techniques that minimize the required online adaptive parameters while guaranteeing excellent real-time control performance. Finally, comparative simulations are conducted to validate the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Fuzzy Systems
IEEE Transactions on Fuzzy Systems 工程技术-工程:电子与电气
CiteScore
20.50
自引率
13.40%
发文量
517
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Fuzzy Systems is a scholarly journal that focuses on the theory, design, and application of fuzzy systems. It aims to publish high-quality technical papers that contribute significant technical knowledge and exploratory developments in the field of fuzzy systems. The journal particularly emphasizes engineering systems and scientific applications. In addition to research articles, the Transactions also includes a letters section featuring current information, comments, and rebuttals related to published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信