Imtiaz Ahmed , Nikita Gupta , Ajit Kumar Gupta , Vijay Kumar Das
{"title":"光化学诱导的 β-内酰胺合成方法","authors":"Imtiaz Ahmed , Nikita Gupta , Ajit Kumar Gupta , Vijay Kumar Das","doi":"10.1002/adsc.202400715","DOIUrl":null,"url":null,"abstract":"<div><div>The synthesis of β‐lactam scaffolds is of paramount importance due to their extensive applications in pharmaceuticals, particularly as antibiotics. Visible light photocatalysis has emerged as a revolutionary approach in this domain, providing a sustainable and efficient pathway for β‐lactam construction. In this review, we meticulously discuss the recent developments in the synthesis of photocatalysed β‐lactam frameworks. A key focus is the Staudinger reaction, traditionally a cornerstone in β‐lactam synthesis, and its adaptation to visible light photocatalysis. We explore the mechanistic intricacies of the Staudinger reaction under photochemical conditions, along with other pivotal cyclization strategies enabled by visible light. By illuminating the novel photocatalytic routes to β‐lactams, this review provides a thorough understanding of the state‐of‐the‐art techniques and sets the stage for future innovations in the green synthesis of these critical compounds.</div></div>","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"366 22","pages":"Pages 4548-4558"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photochemically Induced Approaches to the Syntheses of β‐Lactams\",\"authors\":\"Imtiaz Ahmed , Nikita Gupta , Ajit Kumar Gupta , Vijay Kumar Das\",\"doi\":\"10.1002/adsc.202400715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The synthesis of β‐lactam scaffolds is of paramount importance due to their extensive applications in pharmaceuticals, particularly as antibiotics. Visible light photocatalysis has emerged as a revolutionary approach in this domain, providing a sustainable and efficient pathway for β‐lactam construction. In this review, we meticulously discuss the recent developments in the synthesis of photocatalysed β‐lactam frameworks. A key focus is the Staudinger reaction, traditionally a cornerstone in β‐lactam synthesis, and its adaptation to visible light photocatalysis. We explore the mechanistic intricacies of the Staudinger reaction under photochemical conditions, along with other pivotal cyclization strategies enabled by visible light. By illuminating the novel photocatalytic routes to β‐lactams, this review provides a thorough understanding of the state‐of‐the‐art techniques and sets the stage for future innovations in the green synthesis of these critical compounds.</div></div>\",\"PeriodicalId\":118,\"journal\":{\"name\":\"Advanced Synthesis & Catalysis\",\"volume\":\"366 22\",\"pages\":\"Pages 4548-4558\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Synthesis & Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1615415024005880\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1615415024005880","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Photochemically Induced Approaches to the Syntheses of β‐Lactams
The synthesis of β‐lactam scaffolds is of paramount importance due to their extensive applications in pharmaceuticals, particularly as antibiotics. Visible light photocatalysis has emerged as a revolutionary approach in this domain, providing a sustainable and efficient pathway for β‐lactam construction. In this review, we meticulously discuss the recent developments in the synthesis of photocatalysed β‐lactam frameworks. A key focus is the Staudinger reaction, traditionally a cornerstone in β‐lactam synthesis, and its adaptation to visible light photocatalysis. We explore the mechanistic intricacies of the Staudinger reaction under photochemical conditions, along with other pivotal cyclization strategies enabled by visible light. By illuminating the novel photocatalytic routes to β‐lactams, this review provides a thorough understanding of the state‐of‐the‐art techniques and sets the stage for future innovations in the green synthesis of these critical compounds.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.