{"title":"自反应 T 细胞对富饶之地的感知","authors":"Thomas Korn","doi":"10.1016/j.immuni.2024.09.005","DOIUrl":null,"url":null,"abstract":"Understanding the nature of human autoantigen-specific CD4<sup>+</sup> T cells is limited by the difficulty of characterizing these cells <em>ex vivo</em>. In this issue of <em>Immunity</em>, Saggau et al. use ARTE technology to profile CD4<sup>+</sup> T cells specific to disease-relevant autoantigens and find that such cells develop an exhausted phenotype that includes FOXP3 expression and persist for extended periods of time.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"54 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An autoreactive T cell’s perception of a land of plenty\",\"authors\":\"Thomas Korn\",\"doi\":\"10.1016/j.immuni.2024.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the nature of human autoantigen-specific CD4<sup>+</sup> T cells is limited by the difficulty of characterizing these cells <em>ex vivo</em>. In this issue of <em>Immunity</em>, Saggau et al. use ARTE technology to profile CD4<sup>+</sup> T cells specific to disease-relevant autoantigens and find that such cells develop an exhausted phenotype that includes FOXP3 expression and persist for extended periods of time.\",\"PeriodicalId\":13269,\"journal\":{\"name\":\"Immunity\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":25.5000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.immuni.2024.09.005\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.09.005","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
对人类自身抗原特异性 CD4+ T 细胞性质的了解受到了限制,因为很难对这些细胞进行体内外特征描述。在本期《免疫》(Immunity)杂志上,Saggau 等人利用 ARTE 技术分析了与疾病相关的自身抗原特异性 CD4+ T 细胞,发现这些细胞形成了包括 FOXP3 表达在内的衰竭表型,并能长期存在。
An autoreactive T cell’s perception of a land of plenty
Understanding the nature of human autoantigen-specific CD4+ T cells is limited by the difficulty of characterizing these cells ex vivo. In this issue of Immunity, Saggau et al. use ARTE technology to profile CD4+ T cells specific to disease-relevant autoantigens and find that such cells develop an exhausted phenotype that includes FOXP3 expression and persist for extended periods of time.
期刊介绍:
Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.