{"title":"镍催化直接合成超支化液体寡聚乙烯","authors":"Mengyao Zhang , Shengyu Dai","doi":"10.1039/d4py00709c","DOIUrl":null,"url":null,"abstract":"<div><div>Late transition metal-catalyzed ethylene chain-walking polymerization offers a remarkably convenient method for synthesizing hyperbranched polyethylene. In this study, we created a series of pyridine-imine Ni(<span>ii</span>) complexes with axially flexible cycloalkyl substituents, tailored for the production of hyperbranched oligoethylene oils (HBOEOs). These complexes exhibited moderate activity in HBOEO synthesis, reaching rates of up to 4.90 × 10<sup>5</sup> g mol<sup>−1</sup> h<sup>−1</sup>. The resulting products exhibited low molecular weights (325–523 g mol<sup>−1</sup>) and high branching densities (110–167/1000C). NMR analysis verified their diverse branching structures, with a significant proportion of hyperbranched motifs. Notably, the activity, structure, and properties of the HBOEOs produced by the catalytic system were significantly influenced by alterations in the catalyst structure and oligomerization conditions. Specifically, when compared to rigid phenyl substituents, flexible cycloalkyl substituents proved more effective in promoting the catalytic system to produce HBOEOs with a higher degree of branching and improved liquefaction properties.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"15 45","pages":"Pages 4627-4636"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nickel-catalyzed direct synthesis of hyperbranched liquid oligoethylene†\",\"authors\":\"Mengyao Zhang , Shengyu Dai\",\"doi\":\"10.1039/d4py00709c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Late transition metal-catalyzed ethylene chain-walking polymerization offers a remarkably convenient method for synthesizing hyperbranched polyethylene. In this study, we created a series of pyridine-imine Ni(<span>ii</span>) complexes with axially flexible cycloalkyl substituents, tailored for the production of hyperbranched oligoethylene oils (HBOEOs). These complexes exhibited moderate activity in HBOEO synthesis, reaching rates of up to 4.90 × 10<sup>5</sup> g mol<sup>−1</sup> h<sup>−1</sup>. The resulting products exhibited low molecular weights (325–523 g mol<sup>−1</sup>) and high branching densities (110–167/1000C). NMR analysis verified their diverse branching structures, with a significant proportion of hyperbranched motifs. Notably, the activity, structure, and properties of the HBOEOs produced by the catalytic system were significantly influenced by alterations in the catalyst structure and oligomerization conditions. Specifically, when compared to rigid phenyl substituents, flexible cycloalkyl substituents proved more effective in promoting the catalytic system to produce HBOEOs with a higher degree of branching and improved liquefaction properties.</div></div>\",\"PeriodicalId\":100,\"journal\":{\"name\":\"Polymer Chemistry\",\"volume\":\"15 45\",\"pages\":\"Pages 4627-4636\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1759995424003917\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1759995424003917","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Nickel-catalyzed direct synthesis of hyperbranched liquid oligoethylene†
Late transition metal-catalyzed ethylene chain-walking polymerization offers a remarkably convenient method for synthesizing hyperbranched polyethylene. In this study, we created a series of pyridine-imine Ni(ii) complexes with axially flexible cycloalkyl substituents, tailored for the production of hyperbranched oligoethylene oils (HBOEOs). These complexes exhibited moderate activity in HBOEO synthesis, reaching rates of up to 4.90 × 105 g mol−1 h−1. The resulting products exhibited low molecular weights (325–523 g mol−1) and high branching densities (110–167/1000C). NMR analysis verified their diverse branching structures, with a significant proportion of hyperbranched motifs. Notably, the activity, structure, and properties of the HBOEOs produced by the catalytic system were significantly influenced by alterations in the catalyst structure and oligomerization conditions. Specifically, when compared to rigid phenyl substituents, flexible cycloalkyl substituents proved more effective in promoting the catalytic system to produce HBOEOs with a higher degree of branching and improved liquefaction properties.
期刊介绍:
Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.