Thirumurugan Prakasam, Sudhir Kumar Sharma, Florent Ravaux, Farah Benyettou, Matteo Lusi, Varghese Sabu, Philippe Bazin, Thomas Delclos, Ramesh Jagannathan, Jamie Whelan, Mohamad El-Roz, Mark A. Olson, Mahmoud Abdellatief, Obieda S. Mudraj, Felipe Gándara, Ali Trabolsi
{"title":"通过催化反应实现二维共价有机框架","authors":"Thirumurugan Prakasam, Sudhir Kumar Sharma, Florent Ravaux, Farah Benyettou, Matteo Lusi, Varghese Sabu, Philippe Bazin, Thomas Delclos, Ramesh Jagannathan, Jamie Whelan, Mohamad El-Roz, Mark A. Olson, Mahmoud Abdellatief, Obieda S. Mudraj, Felipe Gándara, Ali Trabolsi","doi":"10.1016/j.chempr.2024.09.006","DOIUrl":null,"url":null,"abstract":"Molecular-level structural modification is a well-established approach to impart advanced functionality to materials that continues to be the focus of research and development in both academic and industrial laboratories. Here, we report the synthesis of an ordered two-dimensional (2D) poly[2]catenate from the simultaneous self-assembly of two organic ligands and a metal salt by the formation of catenate links using metal coordination and imine condensation reactions. Subsequent chemical reduction of the imine bonds generated the corresponding demetallized poly[2]catenane, which was found to have greater non-rigid-body-like character than the poly[2]catenate as a result of the increased internal dynamics of the mechanical bonds and resulted in an 8-fold increase in elasticity. This synthetic approach allowed for the efficient incorporation of mechanically interlocked molecules (MIMs) within a 2D ordered structure and demonstrated their importance in improving the physical properties of materials by accessing molecular degrees of freedom that cannot be achieved by other means.","PeriodicalId":268,"journal":{"name":"Chem","volume":"54 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D covalent organic framework via catenation\",\"authors\":\"Thirumurugan Prakasam, Sudhir Kumar Sharma, Florent Ravaux, Farah Benyettou, Matteo Lusi, Varghese Sabu, Philippe Bazin, Thomas Delclos, Ramesh Jagannathan, Jamie Whelan, Mohamad El-Roz, Mark A. Olson, Mahmoud Abdellatief, Obieda S. Mudraj, Felipe Gándara, Ali Trabolsi\",\"doi\":\"10.1016/j.chempr.2024.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular-level structural modification is a well-established approach to impart advanced functionality to materials that continues to be the focus of research and development in both academic and industrial laboratories. Here, we report the synthesis of an ordered two-dimensional (2D) poly[2]catenate from the simultaneous self-assembly of two organic ligands and a metal salt by the formation of catenate links using metal coordination and imine condensation reactions. Subsequent chemical reduction of the imine bonds generated the corresponding demetallized poly[2]catenane, which was found to have greater non-rigid-body-like character than the poly[2]catenate as a result of the increased internal dynamics of the mechanical bonds and resulted in an 8-fold increase in elasticity. This synthetic approach allowed for the efficient incorporation of mechanically interlocked molecules (MIMs) within a 2D ordered structure and demonstrated their importance in improving the physical properties of materials by accessing molecular degrees of freedom that cannot be achieved by other means.\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chempr.2024.09.006\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.09.006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Molecular-level structural modification is a well-established approach to impart advanced functionality to materials that continues to be the focus of research and development in both academic and industrial laboratories. Here, we report the synthesis of an ordered two-dimensional (2D) poly[2]catenate from the simultaneous self-assembly of two organic ligands and a metal salt by the formation of catenate links using metal coordination and imine condensation reactions. Subsequent chemical reduction of the imine bonds generated the corresponding demetallized poly[2]catenane, which was found to have greater non-rigid-body-like character than the poly[2]catenate as a result of the increased internal dynamics of the mechanical bonds and resulted in an 8-fold increase in elasticity. This synthetic approach allowed for the efficient incorporation of mechanically interlocked molecules (MIMs) within a 2D ordered structure and demonstrated their importance in improving the physical properties of materials by accessing molecular degrees of freedom that cannot be achieved by other means.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.