探索数学技能对学生物理解题成绩的影响:结构方程模型分析

IF 2.2 3区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Tong Tong, Feipeng Pi, Siyan Zheng, Yi Zhong, Xiaochun Lin, Yajun Wei
{"title":"探索数学技能对学生物理解题成绩的影响:结构方程模型分析","authors":"Tong Tong, Feipeng Pi, Siyan Zheng, Yi Zhong, Xiaochun Lin, Yajun Wei","doi":"10.1007/s11165-024-10201-5","DOIUrl":null,"url":null,"abstract":"<p>Students’ success in physics problem-solving extends beyond conceptual knowledge of physics, relying significantly on their mathematics skills. Understanding the specific contributions of different mathematics skills to physics problem-solving can offer valuable insights for enhancing physics education. Yet such studies are rare, particularly at the high school level. This study addresses the underexplored area of this topic in secondary education by investigating the associations between physics problem-solving performance using a robust methodological framework. We applied exploratory factor analysis (EFA) to identify latent sub-mathmetics skills relevant to physics problem-solving and employed structural equation modeling (SEM) to examine the causal impact of these skills on students’ performance in physics. The study analyzed data from a municipal-wide assessment involving 1,878 grade 12 students in Southern China. The results demonstrate that mathematics skills impacting high school students’ physics problem-solving performance can be categorized into two sub skills, algebraic skills and geometric skills. It also indicates that algebraic skills have a stronger direct effect on physics problem-solving performance compared to geometric skills in high school setting. These findings suggest that integrating focused algebraic training within physics education can significantly improve student outcomes in STEM fields. We recommend that educators design curricula and instructional strategies that emphasize the development of algebraic skills necessary for solving complex physics problems. Additionally, these findings have important implications for policymakers, who should consider integrating targeted mathematics training within physics curricula to foster interdisciplinary learning and better prepare students for challenges in STEM education.</p>","PeriodicalId":47988,"journal":{"name":"Research in Science Education","volume":"67 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Effect of Mathematics Skills on Student Performance in Physics Problem-Solving: A Structural Equation Modeling Analysis\",\"authors\":\"Tong Tong, Feipeng Pi, Siyan Zheng, Yi Zhong, Xiaochun Lin, Yajun Wei\",\"doi\":\"10.1007/s11165-024-10201-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Students’ success in physics problem-solving extends beyond conceptual knowledge of physics, relying significantly on their mathematics skills. Understanding the specific contributions of different mathematics skills to physics problem-solving can offer valuable insights for enhancing physics education. Yet such studies are rare, particularly at the high school level. This study addresses the underexplored area of this topic in secondary education by investigating the associations between physics problem-solving performance using a robust methodological framework. We applied exploratory factor analysis (EFA) to identify latent sub-mathmetics skills relevant to physics problem-solving and employed structural equation modeling (SEM) to examine the causal impact of these skills on students’ performance in physics. The study analyzed data from a municipal-wide assessment involving 1,878 grade 12 students in Southern China. The results demonstrate that mathematics skills impacting high school students’ physics problem-solving performance can be categorized into two sub skills, algebraic skills and geometric skills. It also indicates that algebraic skills have a stronger direct effect on physics problem-solving performance compared to geometric skills in high school setting. These findings suggest that integrating focused algebraic training within physics education can significantly improve student outcomes in STEM fields. We recommend that educators design curricula and instructional strategies that emphasize the development of algebraic skills necessary for solving complex physics problems. Additionally, these findings have important implications for policymakers, who should consider integrating targeted mathematics training within physics curricula to foster interdisciplinary learning and better prepare students for challenges in STEM education.</p>\",\"PeriodicalId\":47988,\"journal\":{\"name\":\"Research in Science Education\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Science Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1007/s11165-024-10201-5\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Science Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s11165-024-10201-5","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

学生在物理问题解决中的成功,不仅仅是物理概念知识的成功,在很大程度上取决于他们的数学技能。了解不同数学技能对物理问题解决的具体贡献,可以为加强物理教育提供有价值的见解。然而,此类研究并不多见,尤其是在高中阶段。本研究采用稳健的方法论框架,通过调查物理解题成绩之间的关联,解决了中学教育中这一课题领域探索不足的问题。我们采用探索性因子分析(EFA)来识别与物理问题解决相关的潜在子数学能力,并采用结构方程建模(SEM)来检验这些能力对学生物理成绩的因果影响。研究分析了华南地区 1878 名十二年级学生参加的全市性测评数据。结果表明,影响高中生物理解题成绩的数学技能可分为两个子技能,即代数技能和几何技能。研究还表明,与几何技能相比,代数技能对高中生物理解题能力的直接影响更大。这些研究结果表明,在物理教育中融入有针对性的代数训练,能显著提高学生在 STEM 领域的成绩。我们建议教育工作者在设计课程和教学策略时,强调培养解决复杂物理问题所需的代数技能。此外,这些发现对政策制定者也有重要意义,他们应该考虑在物理课程中融入有针对性的数学训练,以促进跨学科学习,让学生为迎接 STEM 教育的挑战做好更好的准备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring the Effect of Mathematics Skills on Student Performance in Physics Problem-Solving: A Structural Equation Modeling Analysis

Exploring the Effect of Mathematics Skills on Student Performance in Physics Problem-Solving: A Structural Equation Modeling Analysis

Students’ success in physics problem-solving extends beyond conceptual knowledge of physics, relying significantly on their mathematics skills. Understanding the specific contributions of different mathematics skills to physics problem-solving can offer valuable insights for enhancing physics education. Yet such studies are rare, particularly at the high school level. This study addresses the underexplored area of this topic in secondary education by investigating the associations between physics problem-solving performance using a robust methodological framework. We applied exploratory factor analysis (EFA) to identify latent sub-mathmetics skills relevant to physics problem-solving and employed structural equation modeling (SEM) to examine the causal impact of these skills on students’ performance in physics. The study analyzed data from a municipal-wide assessment involving 1,878 grade 12 students in Southern China. The results demonstrate that mathematics skills impacting high school students’ physics problem-solving performance can be categorized into two sub skills, algebraic skills and geometric skills. It also indicates that algebraic skills have a stronger direct effect on physics problem-solving performance compared to geometric skills in high school setting. These findings suggest that integrating focused algebraic training within physics education can significantly improve student outcomes in STEM fields. We recommend that educators design curricula and instructional strategies that emphasize the development of algebraic skills necessary for solving complex physics problems. Additionally, these findings have important implications for policymakers, who should consider integrating targeted mathematics training within physics curricula to foster interdisciplinary learning and better prepare students for challenges in STEM education.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in Science Education
Research in Science Education EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
6.40
自引率
8.70%
发文量
45
期刊介绍: 2020 Five-Year Impact Factor: 4.021 2020 Impact Factor: 5.439 Ranking: 107/1319 (Education) – Scopus 2020 CiteScore 34.7 – Scopus Research in Science Education (RISE ) is highly regarded and widely recognised as a leading international journal for the promotion of scholarly science education research that is of interest to a wide readership. RISE publishes scholarly work that promotes science education research in all contexts and at all levels of education. This intention is aligned with the goals of Australasian Science Education Research Association (ASERA), the association connected with the journal. You should consider submitting your manscript to RISE if your research: Examines contexts such as early childhood, primary, secondary, tertiary, workplace, and informal learning as they relate to science education; and Advances our knowledge in science education research rather than reproducing what we already know. RISE will consider scholarly works that explore areas such as STEM, health, environment, cognitive science, neuroscience, psychology and higher education where science education is forefronted. The scholarly works of interest published within RISE reflect and speak to a diversity of opinions, approaches and contexts. Additionally, the journal’s editorial team welcomes a diversity of form in relation to science education-focused submissions. With this in mind, RISE seeks to publish empirical research papers. Empircal contributions are: Theoretically or conceptually grounded; Relevant to science education theory and practice; Highlight limitations of the study; and Identify possible future research opportunities. From time to time, we commission independent reviewers to undertake book reviews of recent monographs, edited collections and/or textbooks. Before you submit your manuscript to RISE, please consider the following checklist. Your paper is: No longer than 6000 words, including references. Sufficiently proof read to ensure strong grammar, syntax, coherence and good readability; Explicitly stating the significant and/or innovative contribution to the body of knowledge in your field in science education; Internationalised in the sense that your work has relevance beyond your context to a broader audience; and Making a contribution to the ongoing conversation by engaging substantively with prior research published in RISE. While we encourage authors to submit papers to a maximum length of 6000 words, in rare cases where the authors make a persuasive case that a work makes a highly significant original contribution to knowledge in science education, the editors may choose to publish longer works.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信